低含液输气管道内液滴时空分布特性的数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation on Droplet Distribution Characteristics in Gas Pipeline with Low Liquid Loading
  • 作者:管孝瑞
  • 英文作者:GUAN Xiaorui;State Key Laboratory of Safety and Control for Chemicals,SINOPEC Research Institute of Safety Engineering;
  • 关键词:低含液率 ; 输气管道 ; 液滴分布 ; 数值模拟
  • 英文关键词:low liquid loading;;gas pipeline;;droplets distribution;;numerical simulation
  • 中文刊名:SYSY
  • 英文刊名:Research and Exploration in Laboratory
  • 机构:中国石化青岛安全工程研究院化学品安全控制国家重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:实验室研究与探索
  • 年:2019
  • 期:v.38;No.279
  • 基金:国家自然科学基金项目(51276200);; 国家重点研发计划(2016YFC0801500)
  • 语种:中文;
  • 页:SYSY201905011
  • 页数:6
  • CN:05
  • ISSN:31-1707/T
  • 分类号:44-49
摘要
基于Euler-Eulerian两相流模型,采用CFD软件对低含液输气管道内不同粒径分布的液滴群空间分布以及随时间的变化规律进行了研究。利用边界层网格与增强壁面函数得到了近壁面处边界层内的速度分布:水平管内液滴群主要集中在管路底部区域;弯头内二次流促使液滴群向弯头外侧运动;上弯头后的竖直管内二次流依然存在,液滴群主要集中在迎流侧;液滴群的波动随着时间具有周期性。
        Based on the theory of Eulerian gas-liquid flow model,a mathematical model of gas-liquid flow with low liquid loading was established by CFD software. Droplet groups with different particle size distribution were considered.Droplet spatial distribution and variation with time were studied in detail. Velocity distribution in the boundary layer near the wall can be obtained with combining boundary layer mesh with enhanced wall function. Droplets are concentrated on the lower region of the horizontal pipe. Centrifugal force in the elbow promotes droplets to move to the outside. Affected by the elbow,there is a pair of vortexes in the vertical pipe downstream of the elbow. Droplets are mainly concentrated on the upstream side in the vertical pipe. The droplets fluctuation moves periodically over time.
引文
[1] Zhang H Q,Sarica C. Low liquid loading gas/liquid pipe flow[J].Journal of Natural Gas Science and Engineering,2011,3(2):413-422.
    [2] Hart J,Hamersma P J,Fortuin J M H. Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup[J]. International Journal of Multiphase Flow,1989,15(6):947-964.
    [3] Meng W,Chen X T,Kouba G E,et al. Experimental study of low liquid loading gas-liquid flow in near-horizontal pipes[C]//SPE Annual Technical Conference and Exhibition. Houston:Society of Petroleum Engineers,1999:SPE-56466.
    [4] Badie S,Hale C P,Lawrence C J,et al. Pressure gradient and holdup in horizontal two-phase gas–liquid flows with low liquid loading[J]. International Journal of Multiphase Flow,2000,26(9):1525-1543.
    [5] Badie S,Lawrence C J,Hewitt G F. Axial viewing studies of horizontal gas–liquid flows with low liquid loading[J].International Journal of Multiphase Flow, 2001, 27(7):1259-1269.
    [6] Olive N R,Zhang H Q.,Wang Q,et al. Experimental study of low liquid loading gas-liquid flow in near-horizontal pipes[J]. Journal of Energy Resources Technology,2003,125(4):294-298.
    [7] Fan Y. An investigation of low liquid loading gas–liquid stratified flow in near-horizontal pipes[D]. Tulsa:The University of Tulsa,2005.
    [8] Gawas K. Studies in low-liquid loading in gas/oil/water three phase flow in horizontal and near-horizontal pipes[D]. Tulsa:The University of Tulsa,2013.
    [9]徐新建,胡光忠,邹亮,等.气固二相流固相颗粒播撒装置设计及数值模拟[J].实验室研究与探索,2018(3):62-64.
    [10]王珏,杨宁.基于EMMS方法的鼓泡塔反应器CFD及群平衡模拟[J].化工学报,2017,68(7):2667-2677.
    [11]管孝瑞,王建军,金有海,等.低含液管线内液膜厚度分布特性的试验研究[J].流体机械,2017,45(2):6-11.
    [12] Han H,Gabriel K. A numerical study of entrainment mechanism in axisymmetric annular gas-liquid flow[J]. Journal of Fluids Engineering,2007,129:293-301.
    [13] Kader B A. Temperature and concentration profiles in fully turbulent boundary layers[J]. International Journal of Heat and Mass Transfer,1981,24(9):1541-1544.
    [14] Nikuradse J. Laws of turbulent flow in smooth pipes[J]. National Aeronautics and Space Administration, 1966, 36(264):1050-1052.
    [15]章梓雄,董曾南.黏性流体力学[M]. 2版.北京:清华大学出版社,2011:261-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700