316L/EH40复合板可逆热轧过程数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of 316L/EH40 clad plate during reversible hot rolling process
  • 作者:金贺荣 ; 段昌新 ; 戴超
  • 英文作者:JIN He-rong;DUAN Chang-xin;DAI Chao;Key Laboratory of Advanced Forging and Stamping Technology and Science,Ministry of Education of China,Yanshan University;Parallel Robot and Mechatronic System Laboratory of Hebei Province,Yanshan University;School of Mechanical Engineering,Yanshan University;
  • 关键词:不锈钢复合板 ; 有限元仿真 ; 可逆热轧 ; 热力耦合
  • 英文关键词:stainless steel clad plate;;finite element simulation;;reversible hot rolling;;thermo-mechanical coupling
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:燕山大学先进锻压成形技术与科学教育部重点实验室;燕山大学河北省并联机器人与机电系统实验室;燕山大学机械工程学院;
  • 出版日期:2019-02-28
  • 出版单位:塑性工程学报
  • 年:2019
  • 期:v.26
  • 基金:国家自然科学基金委员会-宝钢集团有限公司钢铁联合研究基金资助项目(U1660111);; 河北省高等学校科学技术研究资助项目(ZD2017076);; 河北省自然科学基金-钢铁联合研究基金资助项目(E2014203118)
  • 语种:中文;
  • 页:SXGC201901013
  • 页数:7
  • CN:01
  • ISSN:11-3449/TG
  • 分类号:88-94
摘要
为研究316L/EH40复合板在热轧过程中温度场对应力场、应变场的影响,建立了热轧过程的三维动态热力耦合计算模型,利用所建立的模型对复合板热轧过程进行了仿真计算,分析了轧制过程中温度场、应力场、应变场、残余应力的变化规律。研究结果表明:复合板基层表面温度变化范围最大;基层表面温度呈先下降后上升的变化趋势,复层中心与基层中心温度呈逐渐上升的变化趋势;等效压应力峰值由49.93 MPa逐渐变大至104.04 MPa;等效应变值呈台阶式上升的变化趋势;界面处残余应力沿宽度方向分布较为均匀,其中复层侧残余应力值较大,最大为93.7 MPa,基层侧残余应力值较小,最大为71.9 MPa。
        To study the influence of temperature field on stress field and strain field in hot rolling process of 316 L/EH40 clad plate,a three-dimensional dynamic thermo-mechanical coupling calculation model of hot rolling process was established.The hot rolling simulation of clad plate was carried out by using the established model,the change law of temperature field,stress field,strain field and residual stress in rolling process was analyzed.The results show that the temperature variation range of base layer surface of clad plate is the largest.The temperature of base layer surface decreases first and then increases,while the temperatures of the clad layer center and base layer center increase gradually.The peak value of equivalent compressive stress gradually changes from 49.93 to 104.04 MPa.The equivalent strain value shows a stepwise increasing trend.The residual stress of interface is evenly distributed along the width direction,in which the residual stress on the side of clad layer is larger,the max value is 93.7 MPa,the residual stress on the side of the base layer is smaller,and the max value is 71.9 MPa.
引文
[1]代响林,刘宝玺,马久乐,等.真空热轧法制备不锈钢复合板组织和力学性能[J].钢铁,2017,52(2):65-70.DAI Xianglin,LIU Baoxi,MA Jiule,et al.Microstructure and mechanical properties of stainless steel clad plate fabrecated by vacuum hot rolling[J].Iron and Steel,2017,52(2):65-70.
    [2]BADDOO N R.Stainless steel in construction:A review of research,applications,challenges and opportunities[J].Journal of Constructional Steel Research,2008,64(11):1199-1206.
    [3]李龙,张心金,刘会云,等.不锈钢复合板的生产技术及工业应用[J].轧钢,2013,30(3):43-47.LI Long,ZHANG Xinjin,LIU Huiyun,et al.Production technology and application of stainless steel clad plate[J].Steel Rolling,2013,30(3):43-47.
    [4]柴箫君,李洪波,张杰,等.热连轧高适应度工作辊温度场计算模型的研究[J].塑性工程学报,2017,24(4):36-41.CHAI Xiaojun,LI Hongbo,ZHANG Jie,et al.A highly adaptable temperature field calculation model for work roll in hot tandem rolling[J].Journal of Plasticity Engineering,2017,24(4):36-41.
    [5]杨方方,皇涛,陈拂晓,等.异质金属层状复合板分层应力-应变关系研究[J].塑性工程学报,2018,25(1):187-191,205.YANG Fangfang,HUANG Tao,CHEN Fuxiao,et al.Research on delamination stress-strain relationship of heterostructure laminated composite sheets[J].Journal of Plasticity Engineering,2018,25(1):187-191,205.
    [6]江莉,刘辉.Al-Mg-Ti轧制复合板界面结合机理及力学性能[J].锻压技术,2017,42(2):150-155.JIANG Li,LIU Hui.Bonding mechanism and mechanical properties of rolled multilayered composite sheet Al-Mg-Ti[J].Forging&Stamping Technology,2017,42(2):150-155.
    [7]丁海民,范孝良,王进峰,等.热轧复合不锈钢-碳钢复合板界面特征[J].材料热处理学报,2011,32(11):18-22.DING Haimin,FAN Xiaoliang,WANG Jinfeng,et al.Interface characterization of hot-rolled stainless steel/carbon steel clad[J].Transactions of Materials and Heat Treatment,2011,32(11):18-22.
    [8]ZHOU S X.An integrated model for hot rolling of steel strip[J].Journal of Materials Processing Technology,2003,134(3):338-351.
    [9]李晓谦,李毅波.基于MARC平台的连续铸轧热力耦合分析[J].中国机械工程,2006,17(9):915-918.LI Xiaoqian,LI Yibo.Thermo-mechanical coupling analysis of continuous cast rolling process using MARC software[J].Chinese Journal of Mechanical Engineering,2006,17(9):915-918.
    [10]朱旭霞,彭大暑,黎祚坚.多层复合板热轧复合过程的数值模拟[J].锻压技术,2004,29(1):30-32.ZHU Xuxia,PENG Dashu,LI Zuojian.Numerical simulation of multi-layer composite in hot rolling procedure[J].Forging&Stamping Technology,2004,29(1):30-32.
    [11]郭丽丽,王长峰,詹鉴.基于二次开发的AZ31镁合金热轧有限元模拟和实验研究[J].塑性工程学报,2017,24(6):48-54.GUO Lili,WANG Changfeng,ZHAN Jian.Experimental studies and finite element simulation on AZ31 magnesium alloy during hot rolling based on secondary development[J].Journal of Plasticity Engineering,2017,24(6):48-54.
    [12]谢玲玲,陈昌棚,陈莹华,等.多层套扁挤压筒的热-力耦合有限元分析及结构优化[J].锻压技术,2017,42(3):90-95.XIE Lingling,CHEN Changpeng,CHEN Yinghua,et al.Thermal stress coupling finite element analysis and structural optimization of multi-layer flat extrusion container[J].Forging&Stamping Technology,2017,42(3):90-95.
    [13]邹艳明,林高用,杨益航,等.铜、铁、铜叠片热轧复合的数值模拟[J].钢铁研究学报,2011,23(7):23-26.ZOU Yanming,LIN Gaoyong,YANG Yihang,et al.Numerical simulation of Cu/Fe/Cu thin plate hot-roll bonding[J].Journal of Iron and Steel Research,2011,23(7):23-26.
    [14]CHAUDHARI G P,ACOFF V.Cold roll bonding of multi-layered bi-metal laminate composites[J].Composites Science&Technology,2009,69(10):1667-1675.
    [15]金贺荣,张磊.多道次热轧不锈钢复合板热力耦合模拟及实验研究[J].塑性工程学报,2018,25(5):158-165.JIN Herong,ZHANG Lei.Thermo-mechanical coupling simulation and experimental research of stainless steel clad plate in multi-pass hot rolling[J].Journal of Plasticity Engineering,2018,25(5):158-165.
    [16]金贺荣,周永强,耿永祥.宽厚不锈钢复合板轧制力计算与参数影响分析[J].钢铁,2015,50(5):38-43.JIN Herong,ZHOU Yongqiang,GENG Yongxiang.Rolling force calculation and parameters influence analysis of wide stainless steel clad plate[J].Iron and Steel,2015,50(5):38-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700