基于剪切稀化效应的血液流体-扩张血管耦合模型的血管损伤分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Arterial Injury Assessment by Computational Interaction Model of Shear Thinning Blood with Expanded Stenotic Vascular
  • 作者:江旭东 ; 李鹏飞 ; 刘铮 ; 滕晓艳
  • 英文作者:JIANG Xudong;LI Pengfei;LIU Zheng;TENG Xiaoyan;School of Mechanical and Power Engineering, Harbin University of Science and Technology;College of Mechanical and Electrical Engineering, Harbin Engineering University;
  • 关键词:弯曲血管 ; 血管支架 ; 剪切稀化 ; 血管损伤
  • 英文关键词:curved vascular;;intravascular stent;;shear-thinning;;arterial injury
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:哈尔滨理工大学机械动力工程学院;哈尔滨工程大学机电工程学院;
  • 出版日期:2019-07-10 14:23
  • 出版单位:上海交通大学学报
  • 年:2019
  • 期:v.53;No.400
  • 基金:国家自然科学基金(51505096);; 黑龙江省自然科学基金(E2015026)资助项目
  • 语种:中文;
  • 页:SHJT201906019
  • 页数:8
  • CN:06
  • ISSN:31-1466/U
  • 分类号:123-130
摘要
在考虑血液流体的剪切稀化效应的前提下,分析了人体血管支架、狭窄血管和血液的耦合作用,以及血管支架介入对血管损伤的影响,构建了S型与N型血管支架耦合系统的动力学模型,采用血管的斑块峰值应力、血管壁面的峰值切应力及峰值等效应力等参数来评价斑块易脆性和血管再狭窄等血管的损伤性能.结果表明,与S型支架相比,N型支架的血管斑块峰值应力、血管壁面峰值切应力及其峰值等效应力均较低,能够降低斑块脆性断裂的风险;在N型支架的血管扩张区域的低壁面切应力区域较小且通流截面较大,从而降低了血管再狭窄的发生概率.
        The interaction of intravascular stent, stenotic artery and blood characterized with shear thinning is analyzed to investigate the induced arterial injury during implantation of a stent into a curved artery. Computational fluid-structure interaction model with S-type and N-type stents is presented to anticipate the plaque vulnerability based on three indices including the peak plaque stress, highest wall shear stress and wall equivalent stress, and the resultant arterial restenosis based on lowest wall shear stress. The numerical results show that the developed peak plaque stress, peak wall shear stress and peak wall equivalent stress for the N-type stent is less than the counterparts for the S-type stent, which suggest that the former takes a lower risk of plaque rupture than the latter. Compared with the S-type stent, the less areas with the lowest wall shear stress and more flow cross-section are observed in the expanded stenotic artery for the N-type stent, which suggests that the risk of arterial restenosis is lower for the N-type stent.
引文
[1] ZUN P S,ANIKINA T,SVITENKOV A,et al.A comparison of fully-coupled 3D in-stent restenosis simulations to in-vivo data [J].Frontiers in Physiology,2017,8(5):1-12.
    [2] KARIMI A,NAVIDBAKHSH M,RAZAGHI R.A finite element study of balloon expandable stent for plaque and arterial vulnerability assessment [J].Journal of Applied Physics,2014,116(4):044701-044701-8.
    [3] QIAO A K,ZHANG Z Z.Numerical simulation of vertebral artery stenosis treated with different stents [J].Journal of Biomechanical Engineering,2014,136(4):1274-1283.
    [4] WEI L L,CHEN Q,LI Z Y.Study on the impact of straight stents on arteries with different curvatures [J].Journal of Mechanics in Medicine and Biology,2016,16(7):1650093-1-14.
    [5] EBRAHIM B,MAHDI H,ALIREZA K,et al.Numerical evaluation of stenosis location effects on hemodynamics and shear stress through curved artery [J].Journal of Biomaterials and Tissue Engineering,2014,4(5):358-366.
    [6] ALIREZA K,MAHDI N,RAZAGHI R,et al.A computational fluid-structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries [J].Journal of Applied Physics,2014,115(14):144702-144702-8.
    [7] KELLER B K,AMATRUDA C M,HOSE D R,et al.Contribution of mechanical and fluid stresses to the magnitude of in-stent restenosis at the level of individual stent struts [J].Cardiovascular Engineering and Technology,2014,5 (2):164-175.
    [8] POON E K W,BARLIS P,MOORE S,et al.Numerical investigations of the hemodynamic changes associated with stent malapposition in an idealised coronary artery [J].Journal of Biomechanics,2014,47(12):2843-2851.
    [9] SUSANN B,JOHN O,MARK W,et al.Hemo-dynamics in idealized stented coronary arteries:Important stent design considerations [J].Annals of Biomedical Engineering,2016,44(2):315-329.
    [10] ALBERTO G,JO?O J,ALEXANDRA M,et al.Shear-thining effects of hemodynamics in patient-specific cerebral aneurysms [J].Mathematical Biosciences and Engineering,2013,10(3):649-655.
    [11] NADEEM S,IJAZ S.Theoretical analysis of shear thinning hyperbolic tangent fluid model for blood flow in curved artery with stenosis [J].Journal of Applied Fluid Mechanics,2016,9(5):2217-2227.
    [12] MARTIN D M,MURPHY E A,BOYLE F J.Computational fluid dynamics analysis of balloon-expandable coronary stents:Influence of stent and vessel deformation [J].Medical Engineering & Physics,2014,36(8):1047-1056.
    [13] CHIASTRA C,MIGLIAVACCA F,MARTíNEZ M á,et al.On the necessity of modelling fluid-structure interaction for stented coronary arteries [J].Journal of the Mechanical Behavior of Biomedical Materials,2014,34(6):217-230.
    [14] CHEN H Y,KOO B K,KASSAB G S.Impact of bifurcation dual stenting on endothelial shear stress [J].Journal of Applied Physiology,2015,119(6):627-632.
    [15] MUHAMMAD F K,DAVID B,ASHCROFT I,et al.A novel approach to design lesion-specific stents for minimum recoil [J].Journal of Medical Devices,2016,11(3):011001-1-10.
    [16] LALLY C,REID A J,PRENDERGAST P J.Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension [J].Annals of Biomedi-cal Engineering,2004,32(10):1355-1364.
    [17] MATTACE-RASO F U S,VAN DER CAMMEN T J M,HOFMA A,et al.Arterial stiffness and risk of coronary heart disease and stroke:The rotterdam study [J].Circulation,2006,113(5):657-663.
    [18] SEO T,SCHACHTER L G,BARAKAT A I.Computational study of fluid mechanical disturbance induced by endovascular stents [J].Annals of Biomedical Engineering,2005,33(4):444-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700