多通道局域表面等离子体共振分析装置构建及实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and Experimental Study of a Multi-Channel Localized Surface Plasmon Resonance Analysis Device
  • 作者:王顺 ; 张浩 ; 李伟 ; 李世欣 ; 赵建波 ; 郭清乾 ; 王玲 ; 商俊娟 ; 李鑫 ; 胡建东
  • 英文作者:Wang Shun;Zhang Hao;Li Wei;Li Shixin;Zhao Jianbo;Guo Qingqian;Wang Ling;Shang Junjuan;Li Xin;Hu Jiandong;College of Mechanical &Electrical Engineering,Henan Agricultural University;College of Sciences,Henan Agricultural University;Department of Material and Chemical Engineering,Zhengzhou University of Light Industry;
  • 关键词:传感器 ; 光学传感 ; 局域表面等离子体共振 ; 多通道分析装置 ; 精确定位 ; 环境介质 ; 金纳米粒子
  • 英文关键词:sensor;;optical sensing;;localized surface plasmon resonance;;multi-channel analysis device;;precision alignment;;surrounding medium;;gold nanoparticles
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:河南农业大学机电工程学院;河南农业大学理学院;郑州轻工业学院材料与化学工程学院;
  • 出版日期:2018-10-20 11:54
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.443
  • 基金:国家自然科学基金(31671581,21576248);; 河南省自然科学基金(162300410143);; 中国博士后科学基金(2017M612399);; 河南省教育厅科学技术研究重点项目(16A150011,14A210010);; 河南科技计划项目(172102310244,182102110427,182102110319)
  • 语种:中文;
  • 页:GXXB201902046
  • 页数:7
  • CN:02
  • ISSN:31-1252/O4
  • 分类号:384-390
摘要
构建了一套由宽带光源、多通道精确定位机构及光纤光谱仪等组成的光学局域表面等离子体共振(LSPR)分析装置。采用Savitzky-Golay平滑算法对原始光谱数据进行预处理并建立拟合曲线,研究了粒径为5.0,13.5,25.5,41.0 nm的球形金纳米粒子(AuNPs)LSPR波长在不同折射率介质环境下的响应。结果表明:在相同的介质环境下,LSPR波长与粒径具有较好的正相关性,且共振波长与环境介质的折射率密切相关;对于粒径为25.5 nm和41.0 nm的AuNPs,得到的折射率灵敏度分别为59.46 nm/RIU和70.38 nm/RIU。该装置将多通道定位机构与光纤光谱仪相结合,光谱信号的获取无需进行冗长的波长扫描过程,为开展LSPR研究提供了一种低成本、快速的光学检测系统。
        In this study, a multi-channel analysis device based on localized surface plasmon resonance(LSPR) is demonstrated. This device comprises a broadband light source, a multi-channel precision alignment system, and a fiber spectrometer. The Savitzkky-Golay algorithm is used to process the original spectral data, and fitting curves are obtained. Further, the LSPR wavelength responses of spherical gold nanoparticles(AuNPs) with diameters of 5.0, 13.5, 25.5, and 41.0 nm in the surrounding mediums with different refractive indices are studied. The experimental results demonstrate that the LSPR peak wavelength is positively correlated with the particle size for the same refractive index, and the resonant wavelength is closely related to the refractive index of the surrounding medium. The sensitivities of the refractive index are 59.46 and 70.38 nm/RIU(refractive index unit, RIU) for AuNPs with diameters of 25.5 and 41.0 nm, respectively. The proposed device does not require any tediously long wavelength scanning procedures owing to the combination of a multi-channel alignment system and a fiber spectrometer, thereby providing an inexpensive and rapid optical detection system for conducting LSPR research.
引文
[1] Stern E A, Ferrell R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 1960, 120(1): 130-136.
    [2] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857.
    [3] Liu J Y, Yang H, Luo X G, et al. Investigation of localized surface plasmons resonance properties of metal composition nanoparticles[J]. Acta Optica Sinica, 2010, 30(4): 1902-1905. 刘娟意, 杨欢, 罗先刚, 等. 金属复合纳米粒子的局域表面等离子体特性研究[J]. 光学学报, 2010, 30(4): 1902-1905.
    [4] Gupta B D, Kant R. Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures[J]. Optics and Laser Technology, 2018, 101: 144-161.
    [5] Wang L, Wan X M, Gao R, et al. Preparation and characterization of nanoporous gold film based surface plasmon resonance sensor[J]. Acta Optica Sinica, 2018, 38(2): 0228002. 王丽, 万秀美, 高然, 等. 纳米多孔金膜表面等离子体共振传感器的制备与表征[J]. 光学学报, 2018, 38(2): 0228002.
    [6] Tong K, Dang P, Wang M T, et al. Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film[J]. Chinese Journal of Lasers, 2018, 45(6): 0610002. 童凯, 党鹏, 汪梅婷, 等. 采用TiO2薄膜增强光子晶体光纤表面等离子体共振生物传感器灵敏度的建模分析[J]. 中国激光, 2018, 45(6): 0610002.
    [7] Jatschka J, Dathe A, Csáki A, et al. Propagating and localized surface plasmon resonance sensing: a critical comparison based on measurements and theory[J]. Sensing and Bio-Sensing Research, 2016, 7: 62-70.
    [8] Haes A J, van Duyne R P. A unified view of propagating and localized surface plasmon resonance biosensors[J]. Analytical and Bioanalytical Chemistry, 2004, 379(7/8): 920-930.
    [9] Guo Q B, Liu X F, Qiu J R. Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J]. Chinese Journal of Lasers, 2017, 44(7): 0703005. 郭强兵, 刘小峰, 邱建荣. 局域表面等离子体纳米结构的超快非线性光学及其应用研究进展[J]. 中国激光, 2017, 44(7): 0703005.
    [10] Ma S B, Liu Q, Qian X C, et al. Controllability study of surface plasmon resonance spectra of aluminum nanoparticles[J]. Acta Optica Sinica, 2017, 37(9): 0931001. 马守宝, 刘琼, 钱晓晨, 等. 铝纳米颗粒表面等离子体共振峰可控性研究[J]. 光学学报, 2017, 37(9): 0931001.
    [11] Khlebtsov N G, Trachuk L A, Mel’nikov A G. The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium[J]. Optics and Spectroscopy, 2005, 98(1): 77-83.
    [12] Sepúlveda B, Angelomé P C, Lechuga L M, et al. LSPR-based nanobiosensors[J]. Nano Today, 2009, 4(3): 244-251.
    [13] Wang C K, Chen D, Wang Q Q, et al. Kanamycin detection based on the catalytic ability enhancement of gold nanoparticles[J]. Biosensors and Bioelectronics, 2017, 91: 262-267.
    [14] Wei X C, Wang Y X, Zhao Y X, et al. Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation[J]. Biosensors and Bioelectronics, 2017, 97: 332-337.
    [15] Shrivas K, Shankar R, Dewangan K. Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples[J]. Sensors and Actuators B: Chemical, 2015, 220: 1376-1383.
    [16] Lee B, Park J H, Byun J Y, et al. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin A[J]. Biosensors and Bioelectronics, 2018, 102: 504-509.
    [17] Manzano M, Vizzini P, Jia K, et al. Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine[J]. Sensors and Actuators B: Chemical, 2016, 223: 295-300.
    [18] Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58(1): 267-297.
    [19] Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold[J]. Discussions of the Faraday Society, 1951, 11: 55-75.
    [20] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241(105): 20-22.
    [21] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639.
    [22] Chen S W, Wang J X, Sheng W N, et al. Analysis of SPR signal by using optimized Savitzky-Golay filter[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 1124-1128. 陈书旺, 王军星, 盛伟楠, 等. Savitzky-Golay滤波器最优参数的SPR信号分析[J]. 光谱学与光谱分析, 2015, 35(4): 1124-1128.
    [23] Zimmermann B, Kohler A. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy[J]. Applied Spectroscopy, 2013, 67(8): 892-902.
    [24] Zhou W, Zhang W, Wang C, et al. The analysis of noble metal nanoparticles LSPR phenomena[J]. Chinese Journal of Sensors and Actuators, 2010, 23(5): 630-634. 周伟, 张维, 王程, 等. 贵金属纳米颗粒LSPR现象研究[J]. 传感技术学报, 2010, 23(5): 630-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700