转套式配流系统闭死角对工作脉动的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence on Working Pulsation of Closed Angle of Rotating-Sleeve Distributing-Flow System
  • 作者:张延君 ; 张洪信 ; 赵清海 ; 王新亮 ; 程前昌
  • 英文作者:ZHANG Yanjun;ZHANG Hongxin;ZHAO Qinghai;WANG Xinliang;CHENG Qianchang;School of Electromechanic Engineering,Qingdao University;Power Integration and Energy Storage Systems Engineering Technology Center,Qingdao University;
  • 关键词:转套式配流系统 ; 闭死阶段 ; 压缩角 ; 膨胀角 ; 仿真分析
  • 英文关键词:distributing-flow system;;closed phase;;compression angle;;expansion angle;;simulation analysis
  • 中文刊名:QDDX
  • 英文刊名:Journal of Qingdao University(Engineering & Technology Edition)
  • 机构:青岛大学机电工程学院;青岛大学动力集成及储能系统工程技术中心;
  • 出版日期:2018-03-20 15:53
  • 出版单位:青岛大学学报(工程技术版)
  • 年:2018
  • 期:v.33;No.127
  • 基金:国家自然科学基金资助项目(51575286);; 山东省自然科学基金资助项目(2014ZRB01503)
  • 语种:中文;
  • 页:QDDX201801021
  • 页数:5
  • CN:01
  • ISSN:37-1268/TS
  • 分类号:106-110
摘要
为了降低转套式配流系统在转换过程中出现的冲击现象和噪声,本文根据配流系统配流特征,分析了泵腔在两个阶段中闭死升压和降压的数学模型。同时,为改善配流系统工作中液压冲击现象,选取最佳闭死角,并利用仿真软件Fluent,对配流系统工作循环中流量和压力变化进行数值模拟。仿真结果表明,当闭死压缩角为3°时,对流量特性及泵腔压力脉动的影响最小,且最接近理论分析;在任意膨胀阶段,泵腔内部都出现了不同程度的空化现象,且膨胀角越小,流量脉动越大,综合考虑膨胀角选取2°最合适。该研究为转套式配流系统确定闭死角的大小提供了理论依据。
        In order to decrease impact and noise in the conversion process of rotating-sleeve distributing-flow system,the mathematical models of pre-loading and pre-depressurization in piston pump are established based on distributing-flow characteristics.And we choose the best dead angle and simulate the distributing flow fluid model using software Fluent to improve the hydraulic shock.As a consequence,the results show that the compression angle 3° is closest to theoretical value and has the minimum influence on flow and pump pressure characteristic.On the other hand,pump chamber appears cavitation phenomenon on a certain degree and the flow pulsation is smaller with greater expansion angle.So the expansion angle 2° is more suitable to distributingflow system.The study concretely provides the theoretical foundation for ensuring the size of closed angle.
引文
[1]Xu B,Zhang J H,Yang H Y.Investigation on Structural Optimization of Antioverturning Slipper of Axial Piston Pump[J].Science China Technological Sciences,2012,55(11):3010-3018.
    [2]Zhang B,Xu B,Xia C L,et al.Modeling and Simulation on Axial Piston Pump Based on Virtual Prototype Technology[J].Chinese Journal of Mechanical Engineering,2009,22(1):84-90.
    [3]张洪信,张铁柱,赵红,等.单缸轴向内燃泵工作过程与性能模拟研究[J].流体机械,2007,35(3):1-5.
    [4]Zhang H X,Zhang T Z,Wang Y S,et al.Dynamic Model and Simulation Offlat Valve System of Internal Combustion Water Pump[J].Chinese Journal of Mechanical Engineering,2005,18(3):411-414.
    [5]徐威,张洪信,舒培,等.缸间齿轮联动液压发动机柱塞泵运动学研究[J].机械传动,2016,40(5):5-9.
    [6]Lim G H,Chua P S K,He Y B.Modern Water Hydraulics-the New Energy-Transmission Technology in Fluid Power[J].Applied Energy,2003,76(1):239-246.
    [7]王震,聂松林,尹方龙,等.基于PumpLinx纯水轴向柱塞泵配流盘卸荷槽结构的仿真分析[J].液压与气动,2016(2):11-16.
    [8]张洪信,程联军,张铁柱,等.往复柱塞泵转套式配流系统的结构原理[J].流体机械,2015,43(8):48-51.
    [9]马吉恩,徐兵,杨华勇.轴向柱塞泵流量特性理论建模与试验分析[J].农业机械学报,2010,41(1):188-194.
    [10]于立娟,王小东,张学成.轴向柱塞泵流量脉动主动控制方法及仿真研究[J].西安交通大学学报,2013,47(11):43-47.
    [11]张延君,张洪信,赵清海,等.往复柱塞泵转套式配流系统泵腔流场仿真研究[J].液压与气动,2016,40(11):31-35.
    [12]尹方龙,聂松林.水压轴向柱塞泵配流盘预升压角[J].北京工业大学学报,2015,41(9):1281-1288.
    [13]Xu B,Song Y C,Yang H Y.Pre-Compression Volume on Flow Ripple Reduction of a Piston Pump[J].Chinese Journal of Mechanical Engineering,2013,26(6):1259-1266.
    [14]阮俊,聂松林,刘卫,等.封闭加压型配流盘高压范围角研究[J].液压与气动,2010,22(9):74-77.
    [15]那成烈.轴向柱塞泵可压缩流体配流原理[M].北京:兵器工业出版社,2003.
    [16]那成烈.轴向柱塞泵带有减震槽的非对称正遮盖度配流盘的最佳设计[J].工程机械,1985,3(4):29-37.
    [17]徐礼林.轴向柱塞泵配流机构过流面积分析及计算[J].机床与液压,2011,39(24):54-56.
    [18]马吉恩,徐兵,杨华勇.轴向柱塞泵流量特性理论建模与试验分析[J].农业机械学报,2010,41(1):188-194.
    [19]Manring N D,Zhang Y H.The Improved Volumetric-Efficiency of an Axial Piston Pump Utilizing a Trapped-Volume Design[J].Journal of Dynamic Systems Measurement and Control,2001,123(1):479-487.
    [20]王志坚,佟亮,李璐璐,等.基于CFD的离心泵内部三维流动数值模拟和性能预测[J].流体机械,2012,40(6):14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700