组织工程技术治疗骨软骨缺损的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advances in tissue-engineering techniques in the treatment of osteochondral defects
  • 作者:胡宏悻 ; 步子恒 ; 刘忠堂
  • 英文作者:HU Hong-Xing;BU Zi-Heng;LIU Zhong-Tang;Department of Orthopedics, the Second Affiliated Hospital of Wenzhou Medical University;Department of Joint Surgery, Changhai Hospital Affiliated to Second Military Medical University;
  • 关键词:骨软骨缺损 ; 组织工程技术 ; 3D打印 ; 外泌体(Exos)
  • 英文关键词:osteochondral defects;;tissue-engineering techniques;;3D-printing;;SC-Exos
  • 中文刊名:ZHDZ
  • 英文刊名:E-Journal of Translational Medicine
  • 机构:温州医科大学附属第二医院骨科;第二军医大学附属长海医院关节骨病外科;
  • 出版日期:2017-12-31
  • 出版单位:转化医学电子杂志
  • 年:2017
  • 期:v.4;No.42
  • 基金:国家自然科学基金面上项目(51673212)
  • 语种:中文;
  • 页:ZHDZ201712003
  • 页数:6
  • CN:12
  • ISSN:61-9000/R
  • 分类号:16-21
摘要
骨软骨缺损的治疗一直是骨科医生面临的棘手问题,组织工程学的发展为其治疗带来了新的希望.本研究探讨了组织工程材料治疗骨软骨缺损的研究进展.在中国知网、PubM ed和万方数据库中以"骨软骨缺损,组织工程支架,osteochondral defects,cartilage repair,scaffold,3D-printing"为检索词检索关于组织工程材料治疗骨软骨缺损的相关文献.最终选择54篇文献进行综述,得出以下结论:(1)种子细胞包括骨髓间充质干细胞、肌肉干细胞、干细胞衍生的外泌体(SC-Exos)、脂肪干细胞、胚胎干细胞等.SC-Exos显示出取代干细胞治疗关节软骨缺损的巨大潜力.(2)骨形态发生蛋白(BMP)、转化生长因子(TGF)、血管内皮生长因子(VEGF)、胰岛素样生长因子等生长因子在骨软骨缺损的修复过程中发挥了重要作用.(3)单相和双相支架在骨软骨缺损修复中存在缺陷,而三相支架比拟天然骨软骨结构更符合组织工程骨软骨复合支架的要求.(4)3D打印技术在制备多相层支架相比于传统方法如发泡法、粒子滤取法、冷冻干燥法、模板法等具有一定优势.
        The treatment of osteochondral defects is a major challenge in orthopedic surgery,while the development of tissue engineering techniques bring new hope for it. This study investigated the application of tissue-engineering scaffolds material in the treatment of osteochondral defects. The related articles addressing tissue-engineered techniques in the treatment of osteochondral defects were retrieved by searching in Pub Med,CNKI and Wanfang database with such key words "osteochondral defects,scaffolds, 3 D-printing ". Finally, 54 eligible literatures were included. The conclusions are as follows:(1)The seed cells include bone mesenchymal stem cells, muscle stem cells, SC-Exos,adipose-derived stem cells, embryonic stem cells and so on.SC-Exos shows the potential for the replacement of stem cells in the treatment of articular cartilage defects.(2)Growth factors such as BMP,TGF,VEGF and IGF play an important role in the repair of osteochondral defects.(3) The single layer scaffold and bi-layer scaffold have some shortcomings in the repair of osteochondral defects, while compared with the nature bone cartilage structure,tri-layer scaffold is more consistent with the requirements of tissue engineering osteochondral composite scaffold.(4) Compared to traditional methods such as foaming,particle filtration,freeze-drying,template method,3 D printing technology has a certain advantage in the preparation of multi-phase scaffolds.
引文
[1]Hong E,Reddi AH.MicroRNAs in chondrogenesis,articular cartilage,and osteoarthritis:implicationsfor tissue engineering[J].Tissue Eng Part B Rev,2012,18(6):445-453.
    [2]Bruyère O,Cooper C,Pelletier JP,et al.An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally:a report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis(ESCEO)[J].Semin Arthritis Rheum,2014,44(3):253-263.
    [3]Bruyère O,Cooper C,Pelletier JP,et al.A consensus statement on the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis(ESCEO)algorithm for the management of knee osteoarthritis-from evidence-based medicine to the real-life setting[J].Semin Arthritis Rheum,2016,45(4 Suppl):S3-11.
    [4]Jia S,Zhang T,Xiong Z,et al.In vivo evaluation of a novel oriented scaffold-BMSC construct for enhancing full-thickness articular cartilage repair in a rabbit model[J].PLo S One,2015,10(12):e0145667.
    [5]Liu X,Yang Y,Li Y,et al.Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration[J].Nanoscale,2017,9(13):4430-4438.
    [6]Tajbakhsh S,Rocancourt D,Buckingham M.Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice[J].Nature,1996,384(6606):266-270.
    [7]Asakura A,Komaki M,Rudnicki MA.Muscle satellite cells are multipotential stem cells that exhibit myogenic,osteogenic,and adipogenic differentiation[J].Differentiation,2001,68(4-5):245-253.
    [8]Cairns DM,Liu R,Sen M,et al.Interplay of Nkx3.2,Sox9 and Pax3regulates chondrogenicdifferentiation of muscle progenitor cells[J].PLo S One,2012,7(7):e39642.
    [9]Li H,Lu A,Tang Y,et al.The superior regenerative potential of muscle-derived stem cells for articular cartilage repair is attributed to high cell survival and chondrogenic potential[J].Mol Ther Methods Clin Dev,2016,3:16065.
    [10]Savkovic V,Li H,Seon JK,et al.Mesenchymal stem cells in cartilage regeneration[J].Curr Stem Cell Res Ther,2014,9(6):469-488.
    [11]Dickhut A,Pelttari K,Janicki P,et al.Calcification or dedifferentiation:requirement to lock mesenchymal stem cells in a desired differentiation stage[J].J Cell Physiol,2009,219(1):219-226.
    [12]Liang X,Ding Y,Zhang Y,et al.Paracrine mechanisms of mesenchymal stem cell-based therapy:current status and perspectives[J].Cell Transplant,2014,23(9):1045-1059.
    [13]Shen L,Zeng W,Wu YX,et al.Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells[J].Cell Transplant,2013,22(6):1011-1021.
    [14]Song M,Heo J,Chun JY,et al.The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactivebladder[J].Stem Cells Dev,2014,23(6):654-663.
    [15]Ratajczak M Z,Kucia M,Jadczyk T,et al.Pivotal role of paracrine effects in stem cell therapies in regenerative medicine:can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies[J].Leukemia,2011,26(6):1166-1173.
    [16]Chen Y,Chen Y,Zhang S,et al.Parathyroid hormone-induced bone marrow mesenchymal stem cell chondrogenic differentiation and its repair of articular cartilage injury in rabbits[J].Med Sci Monit Basic Res,2016,22:132-145.
    [17]Karageorgiou V,Meinel L,Hofmann S,et al.Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells[J].J Biomed Mater Res A,2004,71(3):528-537.
    [18]Liu Y,Enggist L,Kuffer AF,et al.The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration[J].Biomaterials,2007,28(16):2677-2686.
    [19]Zhao X,Han Y,Li J,et al.BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth[J].Mater Sci Eng C Mater Biol Appl,2017,78:658-666.
    [20]Takahashi Y,Yamamoto M,Tabata Y.Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate[J].Biomaterials,2005,26(23):4856-4865.
    [21]Sakata R,Kokubu T,Nagura I,et al.Localization of vascular endothelial growth factor during the early stages of osteochondral regeneration using a bioabsorbable synthetic polymer scaffold[J].J Orthop Res,2012,30(2):252-259.
    [22]An G,Zhang WB,Ma DK,et al.Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold[J].Eur Rev Med Pharmacol Sci,2017,21(10):2316-2328.
    [23]Tang QO,Shakib K,Heliotis M,et al.TGF-beta3:A potential biological therapy for enhancing chondrogenesis[J].Expert Opin Biol Ther,2009,9(6):689-701.
    [24]Blaney Davidson EN,Vitters EL,van den Berg WB,et al.TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7[J].Arthritis Res Ther,2006,8(3):R65.
    [25]van Beuningen HM,van der Kraan PM,Arntz OJ,et al.Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint[J].Lab Invest,1994,71(2):279-290.
    [26]Yin H,Wang Y,Sun Z,et al.Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles[J].Acta Biomater,2016,33:96-109.
    [27]Kon E,Filardo G,Gobbi A,et al.Long-term results after hyaluronan-based MACT for the treatment of cartilage lesions of the patellofemoral joint[J].Am J Sports Med,2016,44(3):602-608.
    [28]Whyte GP,Mcgee A,Jazrawi L,et al.Comparison of collagen graft fixation methods in the porcine knee:implications for matrix-assisted chondrocyte implantation and second-generation autologous chondrocyte implantation[J].Arthroscopy,2016,32(5):820-827.
    [29]Zhou J,Xu C,Wu G,et al.In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds[J].Acta Biomater,2011,7(11):3999-4006.
    [30]Sarker B,Hum J,Nazhat SN,et al.Combining collagen and bioactive glasses for bone tissueengineering:a review[J].Adv Healthc Mater,2015,4(2):176-194.
    [31]Nooeaid P,Salih V,Beier JP,et al.Osteochondral tissue engineering:scaffolds,stem cells and applications[J].J Cell Mol Med,2012,16(10):2247-2270.
    [32]Fu Q,Saiz E,Tomsia AP.Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration[J].Acta Biomater,2011,7(10):3547-3554.
    [33]Zeng XB,Hu H,Xie LQ,et al.Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation[J].Int J Nanomedicine,2012,7:3365-3378.
    [34]Tanzawa Y,Tsuchiya H,Shirai T,et al.Potentiation of the antitumor effect of calcium phosphate cement containing anticancer drug and caffeine on rat osteosarcoma[J].J Orthop Sci,2011,16(1):77-84.
    [35]Francis L,Meng D,Knowles JC,et al.Multi-functional P(3HB)microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering[J].Acta Biomater,2010,6(7):2773-2286.
    [36]Yazdimamaghani M,Vashaee D,Assefa S,et al.Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering[J].J Biomed Nanotechnol,2014,10(6):911-931.
    [37]Wang CC,Yang KC,Lin KH,et al.Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold[J].Biomaterials,2012,33(1):120-127.
    [38]Zhang Y,Cui X,Zhao S,et al.Evaluation of injectable strontiumcontaining borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model[J].ACS Appl Mater Interfaces,2015,7(4):2393-2403.
    [39]RampichovM,FilovE,Varga F,et al.Fibrin/hyaluronic acid composite hydrogels as appropriate scaffolds for in vivo artificial cartilage implantation[J].ASAIO J,2010,56(6):563-568.
    [40]Yan LP,Silva-Correia J,Oliveira MB,et al.Bilayered silk/silknano Ca P scaffolds for osteochondral tissue engineering:In vitro and in vivo assessment of biological performance[J].Acta Biomater,2015,12:227-241.
    [41]Shi W,Sun M,Hu X,et al.Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J].Adv Mater,2017,29(29):1701089.
    [42]孙凯,年争好,徐成,等.丝素蛋白复合胶原蛋白支架的制备及性能研究[J].中国修复重建外科杂志,2014,28(7):903-908.
    [43]Feng XX,Zhang LL,Chen JY,et al.Preparation and characterization of novel nanocomposite films formed from silk fibroin and nanoTi O2[J].Int J Biol Macromol,2007,40(2):105-111.
    [44]Leong KF,Cheah CM,Chua CK.Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs[J].Biomaterials,2003,24(13):2363-2378.
    [45]Lee WD,Hurtig MB,Pilliar RM,et al.Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells[J].Osteoarthr Cartil,2015,23(8):1307-1315.
    [46]魏戎,武军龙,吴飞翔,等.致密层骨软骨复合支架的制备及其修复关节骨软骨缺损[J].中国组织工程研究,2017,21(2):197-201.
    [47]Yan X,Yu C,Zhou X,et al.Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities[J].Angew Chem Int Ed Engl,2004,43(44):5980-5984.
    [48]Huang S,Kang X,Cheng Z,et al.Electrospinning preparation and drug delivery properties of Eu3+/Tb3+doped mesoporous bioactive glass nanofibers[J].J Colloid Interface Sci,2012,387(1):285-291.
    [49]Lei B,Chen X,Wang Y,et al.Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation[J].J Biomed Mater Res A,2010,94(4):1091-1099.
    [50]Vallet-RegíM,Izquierdo-barba I,Colilla M.Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery[J].Philos Trans A Math Phys Eng Sci,2012,370(1963):1400-1421.
    [51]Vilela CA,Correia C,Oliveira JM,et al.Cartilage Repair Using Hydrogels:A Critical Review of in Vivo Experimental Designs[J].Acs Biomater Sci Eng,2015,1(9):726-739.
    [52]Spiller KL,Maher SA,Lowman AM.Hydrogels for the repair of articular cartilage defects[J].Tissue Eng Part B Rev,2011,17(4):281-299.
    [53]Karageorgiou V,Kaplan D.Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials,2005,26(27):5474-5491.
    [54]Poursamar SA,Hatami J,Lehner AN,et al.Gelatin porous scaffolds fabricated using a modified gas foaming technique:Characterisation and cytotoxicity assessment[J].Mater Sci Eng C Mater Biol Appl,2015,48:63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700