轴流血泵入口管道流场的数值模拟与实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation and experimental study on the flow field in the inflow cannula of an axial blood pump
  • 作者:柳光茂 ; 周建业 ; 孙寒松 ; 陈海波 ; 张岩 ; 胡盛寿
  • 英文作者:LIU Guangmao;ZHOU Jianye;SUN Hansong;CHEN Haibo;ZHANG Yan;HU Shengshou;State Key Laboratory of Cardiovascular Disease,Fuwai Hospital,National Center for Cardiovascular Diseases,Chinese Academy of Medical Sciences and Peking Union Medical College;
  • 关键词:轴流血泵 ; 数值模拟 ; 粒子成像测速 ; 入口管道 ; 血栓形成
  • 英文关键词:axial blood pump;;computational fluid dynamics;;particle image velocimetry;;inflow cannula;;thrombosis
  • 中文刊名:BJSC
  • 英文刊名:Beijing Biomedical Engineering
  • 机构:中国医学科学院阜外医院,北京协和医学院,国家心血管病中心,心血管疾病国家重点实验室;
  • 出版日期:2018-06-12 15:26
  • 出版单位:北京生物医学工程
  • 年:2018
  • 期:v.37
  • 基金:国家自然科学基金(81550050)资助
  • 语种:中文;
  • 页:BJSC201803002
  • 页数:7
  • CN:03
  • ISSN:11-2261/R
  • 分类号:12-18
摘要
目的研究轴流血泵入口管道内血流流场分布情况及血栓形成风险。方法利用计算流体力学(computational fluid dynamics,CFD)模拟血泵及入口管道内流动情况,获取血流速度及其分布;用二维粒子成像测速(particle image velocimetry,PIV)系统测试轴流血泵入口管道中心截面内的血液流动情况及三维粒子成像测速系统测试整个管道内的血液流动情况。CFD计算和PIV实验中血泵的转速为8000 r/min,流量为5.0 L/min。通过分析入口管道内的流场分布评价血泵入口管道内的血栓形成风险。结果整个入口管道内不存在回流、涡流和低速流动区域,血液沿管道的流动速度在管壁边界层外由0 m/s迅速增大到0.8 m/s以上。管道内的血液流速集中分布于1.2~1.5 m/s范围,管道内的平均紊流度为0.17。结论由于管道内的流动平稳且不存在回流、涡流和低速流动,因此不易形成血栓。入口管道使血流平稳,有助于改善轴流血泵内的流场。
        Objective To study the blood flow distribution and the risk of thrombus generation in the inflow cannula of an axial blood pump. Methods The blood flow in the inflow cannula was simulated numerically by computational fluid dynamics(CFD) method to obtain the velocity distribution. Then the blood velocity distribution in the central section of the inflow cannula was obtained by two dimensional particle image velocimetry(PIV) experiment. And the flow distribution in whole inflow cannula was tested with the three dimensional PIV system. The rotational speed of the blood pump was set to 8 000 r/min with the flow rate of 5 L/min. Then the possibility of thrombus generation in the axial blood pump inflow cannula was estimated by analyzing the flow property in the inflow cannula. Results There was no spiral flow,backflow,vortex flow or low-speed flow region in the whole inflow cannula. The flow velocity along the cannula wall increased rapidly from 0 m/s to above 0. 8 m/s outside the boundary layer. The blood velocity mainly distributed from 1. 2 m/s to1. 4 m/s. The turbulence level in the inflow cannula is 0. 17. Conclusions It is hard to form thrombus in the cannula caused by worse blood flow property because there was no backflow,vortex flow or stagnant flow region in the inflow cannula. The inflow cannula can steady the flow entry the blood pump to improve the flow characteristic in the axial blood pump.
引文
[1]Molina EJ,Boyce SW.Current status of left ventricular assist device technology[J].Seminars in Thoracic and Cardiovascular Surgery,2013,25(1):56-63.
    [2]Tchantchaleishvili V,Hallinan W,Schwarz KQ,et al.Longterm total cardiac support in a Fontan-type circulation with Heart Mate II left ventricular assist device[J].Interactive Cardiovascular and Thoracic Surgery,2016,22(5):692-694.
    [3]Saeed D,Maxhera B,Albert A,et al.Conservative approaches for Heart Ware ventricular assist device pump thrombosis may improve the outcome compared with immediate surgical approaches[J].Interactive Cardiovascular and Thoracic Surgery,2016,23(1):90-95.
    [4]Tanoue Y,Jinzai Y,Tominaga R.Jarvik 2000 axial-flow ventricular assist device placement to a systemic morphologic right ventricle in congenitally corrected transposition of the great arteries[J].Artificial Organs,2016,19(1):97-99.
    [5]Fraser KH,Zhang Tao,Ertan MT,et al.A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices:shear stress,exposure time and hemolysis index[J].Journal of Biomechanical Engineering,2012,134(8):081002.
    [6]杨晓琛.人工心脏心室辅助泵流动优化设计与实验研究[D].北京:北京航空航天大学,2011.Yang XC.Flow optimization design and experimental study of the ventricular assist pump of the artificial heart[D].Beijing:Beihang University,2011.
    [7]Muthiah K,Phan J,Robson D,et al.Centrifugal continuousflow left ventricular assist device in patients with hypertrophic cardiomyopathy:a case series[J].ASAIO Journal,2013,59(2):183-187.
    [8]Poullis,M.Computational fluid dynamic analysis to prevent aortic root and valve clots during left ventricular assist device support[J].Journal of Extra-corporeal Technology,2012,44(4):210-215.
    [9]Kosaka R,Nishida M,Maruyama O,et al.Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis[J].Artificial Organs,2011,14(3):178-184.
    [10]Karmonik C,Partovi S,Loebe M,et al.Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta:a patient-specific computational fluid dynamics approach[J].ASAIO Journal,2012,58(6):562-567.
    [11]Throckmorton AL,Lim DS,Mc Culloch MA,et al.Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device[J].ASAIO Journal,2005,51(5):629-635.
    [12]Zhu LL,Zhang XW,Yao ZH.Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics[J].Artificial Organs,2010,34(3):185-192.
    [13]Untaroiu A,Wood HG,Allaire PE,et al.Computational design and experimental testing of a novel axial flow LVAD[J].ASAIO Journal,2005,51(6):702-710.
    [14]Yang XC,Zhang Y,Gui XM,et al.Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump[J].Artificial Organs,2011,35(10):948-955.
    [15]Burgreen GW,Antaki JF,Wu ZJ,et al.Computational fluid dynamics as a development tool for rotary blood pump[J].Artificial Organs,2001,25(5):336-340.
    [16]Wernicke J,Meier D,Mizuguchi K,et al.A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement[J].Artificial Organs,1995,19(2):161-177.
    [17]Yang XC,Gui XM,Huang H,et al.Particle image velocimetry experimental and computational investigation of a blood pump[J].Journal of Thermal Science,2012,21(3):262-268.
    [18]Akagawa E,Lee H,Tatsumi E,et al.Flow visualization for different port angles of a pulsatile ventricular assist device[J].Journal of Artificial Organs,2011,15(2):119-127.
    [19]Day SW,Mc Daniel JC.PIV measurements of flow in a centrifugal blood pump:time-varying flow[J].Journal of Biomechanical Engineering,2005,127(2):254-263.
    [20]王芳群,李岚,钱坤喜,等.基于粒子图像测速技术的血泵内流场研究[J].中国生物医学工程学报,2009,28(4):597-601.Wang FQ,Li L,Qian KX,et al.Visualization study of flow in the blood pumps with particle image velocimetry[J].Chinese Journal of Biomedical Engineering,2009,28(4):597-601.
    [21]Liu GM,Zhang Y,Chen HB,et al.Flow visualization in the outflow cannula of an axial blood pump[J].Bio-Medical Materials and Engineering,2014,24:117-122.
    [22]Apel J,Neudel F,Reul H.Assessment of hemolysis related quantities in a micro axial blood pump by computational fluid dynamics[J].Artificial Organs,2001,25(5):341-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700