基于肖特基电流输运模型和扫描分布电阻显微术的窄量子阱载流子浓度表征(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:2D-carrier profiling in narrow quantum wells by a Schottky's current transport model based on scanning spreading resistance microscopy
  • 作者:黄文超 ; 王晓芳 ; 陈效双 ; 薛玉雄 ; 杨生胜
  • 英文作者:HUANG Wen-Chao;WANG Xiao-Fang;CHEN Xiao-Shuang;XUE Yu-Xiong;YANG Sheng-Sheng;National Laboratory for Vacuum Technology and Physics,Lanzhou Institute of Physics;National Laboratory for Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences;
  • 关键词:载流子浓度 ; 量子阱 ; 扫描分布电阻显微术 ; 肖特基
  • 英文关键词:carrier concentration;;quantum wells;;scanning spreading resistance microscopy;;Schottky
  • 中文刊名:HWYH
  • 英文刊名:Journal of Infrared and Millimeter Waves
  • 机构:兰州空间技术物理研究所真空技术与物理国家重点实验室;中国科学院上海技术物理研究所红外物理国家重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:红外与毫米波学报
  • 年:2018
  • 期:v.37
  • 基金:Supported by China Aerospace Science and Technology Corporation Research and Development Innovation Project(YJT0410);; the Fund of Shanghai Science and Technology Foundation(16ZR1447400);; the National Key Research and Development Program of China(2016YFB0501303)
  • 语种:英文;
  • 页:HWYH201806005
  • 页数:5
  • CN:06
  • ISSN:31-1577/TN
  • 分类号:22-26
摘要
目前对于纳米尺度半导体材料的局域电导与对应载流子浓度关系的描述主要以参数拟合为主。其关系模型主要依赖人工拟合参数,例如理想因子。所以无法从测得局域电导分布来推出载流子浓度分布。为此,提出了一种获取量子阱中载流子浓度的模型。通过小于10nm分辨的截面扫描分布电阻显微术,测得了GaAs/AlGaAs量子阱(110)截面的局域电导分布。基于实验设置,提出了只含有掺杂浓度参量的实验描述模型。通过模型,由测得的量子阱(掺杂浓度从10~(16)/cm~3到10~(18)/cm~3)局域电导分布,推导出了其载流子分布。相对误差在30%之内。
        Current studies on the relationship between carrier concentration in nano-scale semiconductor structure and its local conductance is mainly on parameters fitting.For above connection,existing models rely on artificial fitting parameters such as ideal factor.For above reason,derivation of carrier concentration though measured local conductance can not be done.In this work,we present a scheme to obtain the carrier concentration in narrowquantum wells(QWs).Cross-sectional scanning spreading resistance microscopy(SSRM) provides unparalleled spatial resolution(< 10 nm,Capable of characterizing single QW layer) in electrical characterization.High-resolution local conductance has been measured by SSRMon molecular beam epitaxy-grown GaAs/AlGaAs QWs cleaved surface(110).Based on our experimental set-up,a model which describes conductance by the only argument,i.e.carrier concentration has been built.Using the model,our implementation derived carrier concentration from SSRMmeasured local conductance in GaAs/AlGaAs QWs(doping level:10~(16)/cm~3-10~(18)/cm~3).Relative errors of the results are within 30%.
引文
[1]Xia H,Lu Z Y,Li T X,et al.Distinct photocurrent response of individual Ga As nanowires induced by n-type doping[J].Acs Nano,2012,6(7):6005-6013.
    [2]Nakamura S,Senoh M,Iwasa N,et al.High-power InGaN singlequantum-well-structure blue and violet light-emitting diodes[J].Appl.Phys.Lett.,1995,67(13):1868-1870.
    [3]Choquette K D,Klem J F,Fischer A J,et al.Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at1.3μm[J].Electron.Lett.,2000,36(16):1388-1390.
    [4]Nakada N,Nakaji M,Ishikawa H,et al.Improved characteristics of InGaN multiple-quantum-well light-emitting diode by Ga N/Al Ga N distributed Bragg reflector grown on sapphire[J].Appl.Phys.Lett.,2000,76(14):1804-1806.
    [5]Faist J,Capasso F,Sivco D L,et al.Quantum cascade laser[J].Science,1994,264:553-556.
    [6]Williams B S,Callebaut H,Kumar S,et al.3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation[J].Appl.Phys.Lett.,2003,82(7):1015-1017.
    [7]Shafai C,Thomson D J,Normandin M S,et al.Delineation of semiconductor doping by scanning resistance microscopy[J].Appl.Phys.Lett.,1994,64(3):342-344.
    [8]Lu R P,Kavanagh K L,Dixon-Warren St J,et al.Calibrated scanning spreading resistance microscopy profiling of carriers in III-V structures[J].J.Vac.Sci.Technol.B,2001,19(4):1662-1670.
    [9]Lu R P,Kavanagh K L,Dixon-Warren St J,et al.Scanning spreading resistance microscopy current transport studies on doped III-V semiconductors[J].J.Vac.Sci.Technol.B,2002,20(4):1682-1689.
    [10]Hudait M K,Krupanidhi S B.Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures[J].Physica B,2001,307(1):125-137.
    [11]Sze S M.Physics of semiconductor devices[M].Second Edition,SuZhou,Suzhou University Press,2003,543.
    [12]Lin Y J.Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-Ga N from current-voltage measurements[J].Appl.Phys.Lett.,2005,86(12):1417.
    [13]Roul B,Rajpalke M K,Bhat T N,et al.Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in Ga Nfilms[J].Appl.Phys.Lett.,2011,99(16):760.
    [14]Kenney C,Saraswat K C,Taylor B,et al.Thermionic Field Emission Explanation for Nonlinear Richardson Plots[J].IEEE Transactions on Electron Devices,2011,58(8):2423-2429.
    [15]Cheung S K,Cheung N W.Schottky barrier degradation of the W/Ga As system after high‐temperature annealing[J].J.Appl.Phys.,1986,60(9):3235-3242.
    [16]Suvorova N A,Shchularev A V,Usov I O,et al.XPS study of dependence of Au/6H-SiC Schottky barrier height on carrier concentration[J].Semiconducting and Insulating Materials,Proceedings of the10 th Conference,1998,291-294.
    [17]Pan S H,Shen H,Hang Z,et al.Photoreflectance study of narrowwell strained-layer InGaAs/Ga As coupled multiple-quantum-well structures[J].Phys.Rev.B,1988,38:3375.
    [18]Liu J,Mandal K C,Koley G.Investigation of nanoscale electronic properties of CdZnTe crystals by scanning spreading resistance microscopy[J].Semicond.Sci.Technol.,2009,24(4):045012.
    [19]Padovani F A,Stratton R.Field and thermionic-field emission in Schottky barriers[J].Solid-State Electron,1966,9(7):695-707.
    [20]Hudait M K,Krupanidhi S B.Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures[J].Physica B,2001,307(1):125-137.
    [21]Pipinys P,Lapeika V.Analysis of reverse-Bias leakage current mechanisms in metal/Ga N Schottky diodes[J].Advances in Condensed Matter Physics,2010,2010(1687-8108):211-232.
    [22]Crofton J,Sriram S.Reverse leakage current calculations for SiCSchottky contacts[J].IEEE Transactions on Electron Devices,1966,43(12):2305-2307.
    [23]Stratton R.Theory of field emission from semiconductors[J].Phys.Rev.,1932,125(1):67-82.
    [24]Stratton R.Volt-current characteristics for tunneling through insulating films[J].J.Phys.Chem.Solids,1962,23(9):1177-1190.
    [25]Suman D,Shen S,Kenneth P R,et al.Simulation and design of In A-l As/InGaAs pnp heterojunction bipolar transistors[J].IEEE Transactions on Electron Devices,1998,45(8):1634-1643.
    [26]Tan S O,Tecimer H U,i9ek O,et al.Electrical characterizations of Au/Zn O/n-GaAs Schottky diodes under distinct illumination intensities[J].J.Mater.Sci-Mater.El.,2016,27(8):1-8.
    [27]Sze S M,Crowell C R,Kahng D.Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers[J].J.Appl.Phys.,1964,35(8):2534-2536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700