基于DEM的马衔山山顶辐射平衡特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of radiation balance over terrain factors of Mahan Mountain based on DEM
  • 作者:刘文惠 ; 谢昌卫 ; 李韧 ; 胡国杰 ; 朱小凡
  • 英文作者:LIU Wen-hui;XIE Chang-wei;LI Ren;HU Guo-jie;ZHU Xiao-fan;Cryosphere Research Station on the Qinghai-Tibet Plateau,State Key Laboratory of Cryospheric Sciences,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:太阳辐射 ; 短波净辐射 ; 能量平衡 ; 局地地形 ; 马衔山
  • 英文关键词:solar radiation;;net short-wave radiation;;energy balance;;local topography;;Mahan Mountain
  • 中文刊名:XBSF
  • 英文刊名:Journal of Northwest Normal University(Natural Science)
  • 机构:中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室青藏高原冰冻圈观测研究站;中国科学院大学;
  • 出版日期:2017-11-15
  • 出版单位:西北师范大学学报(自然科学版)
  • 年:2017
  • 期:v.53;No.197
  • 基金:中国科学院百人计划资助项目(51Y551831002)
  • 语种:中文;
  • 页:XBSF201706016
  • 页数:9
  • CN:06
  • ISSN:62-1087/N
  • 分类号:92-100
摘要
基于30m×30m分辨率的DEM,利用起伏地形下的太阳总辐射计算模型和遥感反演地表反照率得到马衔山山顶2013-07-23 11:30的太阳总辐射和短波净辐射的空间分布,并重点分析了多年冻土区的辐射特征.结果表明,局地地形严重影响太阳辐射的空间分布,使得不同坡向、坡度间的辐射存在显著的差异.地势较平的阳坡坡面、山脊的太阳总辐射较大;较陡的阴坡沟谷地带的太阳总辐射较小.多年冻土区地势较低,接收到的太阳总辐射较大,地表反照率较低,短波净辐射相对较大.但蒸发潜热耗热和干泥炭层的导热系数较低,降低了进入浅层土壤的热量,加之进入土壤的热量主要用于融化地下冰,使得土壤温度较低.因此,尽管局地地形对区域辐射收支有着重大影响,但地表特征、土壤性质等通过影响能量的分配状况,对多年冻土的发育和保护起控制作用.
        Based on 30 m ×30 m digital elevation model,this paper combined solar total radiation calculation model over rugged terrain with surface albedo retrieved,the spatial distribution of the total solar radiation and the short-wave net radiation of Mahan Mountain at 11:30 on July 23,2013 were obtained,and then the radiation characteristics of permafrost region are mainly analyzed.The results show that local terrain has strong influence on the spatial distribution of solar radiation.The sunny slope and ridge of flatter area can get more solar total radiation,the shady slope and valleys of steep area is smaller contrary.The permafrost regions is flat,which receives more solar total radiation and the surface albedo is small,large short-wave net radiation is larger.But due to the loss of latent heat of evaporation and thermal conductivity of dry peat layer is lower,the heat into the shallow soil is little.In addition,heat is mainly used for melting underground ice so that soil temperature is lower.Therefore,although the local terrain has a significant effect on regional radiation budget,the surface features and soil properties influence the distribution of energy distribution and contribute to the development and protection of permafrost.
引文
[1]何洪林,于贵瑞,刘新安,等.中国陆地生态信息空间化技术研究(Ⅱ)——太阳辐射要素[J].自然资源学报,2004,19(5):679.
    [2]WONG L T,CHOW W K.Solar radiation model[J].Applied Energy,2001,69(3):194.
    [3]NEWLAND F J.A study of solar radiation models for the coastal region of South China[J].Solar Energy,1989,43(4):230.
    [4]ANGSTROM A.Solar and terrestrial radiation[J].Quarterly Journal of Royal Meteorological Society,1924,20(12):125.
    [5]BIRD R E,HULSTROM R L.A simplified clearsky model for the direct and diffuse insolation on horizontal surfaces[R].Technical Report No.SERI/TR-642-761.Gold,CO:Solar Energy Research Institute,1981.
    [6]MAXWELL E L.METATAT—the solar radiation model used in the production of the NSRDB[J].Solar Energy,1998,62(4):270.
    [7]LIU B Y,JORDAN R C.Daily insulation on surfaces tilted towards the equator[J].Transactions of the American Society of Heating,Refrigeration and Air Conditioning Engineer,1961,10(1):526.
    [8]HAY J E,McKAY D C.Estimating solar radiation on inclined surfaces:a review and assessment of methodologies[J].International Journal of Solar Energy,1985,3(4/5):207.
    [9]BROCK T D.Calculating solar radiation for ecological studies[J].Ecological Modelling,1981,14(1/2):10.
    [10]BONAN G A.A computer model of the solar radiation,soil moisture,and soil thermal regimes in boreal forests[J].Ecological Modelling,1989,45(4):301.
    [11]VARDAVAS I M.A simple model for rapidly computing terres 2trial flux,solar flux,and global mean surface temperature[J].Ecological Modelling,1987,35(3/4):191.
    [12]NIKOLOV N T,ZELLER K F.A solar radiation algorithm for ecosystem dynamic models[J].Ecological Modelling,1992,61(3/4):168.
    [13]DOZIER J,OUTCALT S I.A approach to energy balance simulation over rugged terrain[J].Geographical Analysis,1979,11(1):75.
    [14]DOZIER J,FREW J.Rapid calculation of terrain parameters for radiation modeling from digital elevation data[J].IEEE Transaction on Geosciences and Remote Sensing,1990,28(5):966.
    [15]DUBAYAH R,RICH P M.Topograohic solar radiation models for GIS[J].International Geographical Information Syatems,1995,9(4):410.
    [16]李新,程国栋,陈贤章,等.任意条件下太阳辐射模型的改进[J].科学通报,1995,44(9):993.
    [17]田辉,文军,马耀明,等.复杂地形下黑河流域的太阳辐射计算[J].高原气象,2007,26(4):666.
    [18]李净,李新.基于DEM的坡地太阳总辐射估算[J].太阳能学报,2007,28(8):905.
    [19]曾燕,邱新法,潘敖大,等.地形对黄河流域太阳辐射影响的分析研究[J].地球科学进展,2004,71(6):552.
    [20]曾燕,邱新法,何永健,等.起伏地形下黄河流域太阳散射辐射分布式模拟研究[J].地球物理学报,2008,51(4):991.
    [21]曾燕,邱新法,刘昌明,等.起伏地形下黄科流域太阳直接辐射分布式模拟[J].地理学报,2005,60(4):680.
    [22]何洪林,于贵瑞,牛栋.复杂地形条件下的太阳资源辐射计算方法研究[J].资源科学,2003,25(1):78.
    [23]朱君,唐伯惠.利用MODIS数据计算中国地表短波净辐射通量的研究[J].遥感应用,2008,24(1):60.
    [24]DUGUAY C R.Estimating surface reflectance and albedo from Landsat-5thematic mapper over rugged terrain[J].Photogrammetric Engineering&Remote Sensing,1992,58(5):551.
    [25]DUBAYAH R.Estimating net solar radiation using Landsat-5thematic mapper and digital elevation data[J].Water Resource Research,1992,28(9):2469.
    [26]WANG J.Estimating surface net solar radiation by use of Landsat-5TM and digital elevation models[J].International Journal of Remote Sensing,2000,21(1):31.
    [27]翁笃鸣.中国辐射气候研究[M].北京:气象出版社,1997.
    [28]王炳忠.太阳辐射计算讲座:第一讲太阳能中天文参数的计算[J].太阳能,1999,2(3):8.
    [29]刘俊峰,陈仁升,阳勇,等.实际地形下30min太阳辐射模拟机误差分析——以祁连山马粪沟流域为例[J].高原气象,2011,30(6):1648.
    [30]王介民,高峰.关于地表反照率遥感反演的几个问题[J].遥感技术与应用,2004,19(5):295.
    [31]LIANG Shun-lin.Narrow band to broadband conversions of land surface albedoⅠ:algorithms[J].Remote Sensing of Environment,2000,76(2):213.
    [32]任炳辉.兰州地区附近山地第四纪冰川与冰缘问题[J].冰川冻土,1981,3(1):19.
    [33]李树德.兰州马衔山发现多年冻土[J].冰川冻土,1986,8(4):409.
    [34]董希成,谢昌卫,赵林,等.兰州马衔山多年冻土区地表能量平衡特征分析[J].冰川冻土,2013,35(2):323.
    [35]刘文惠,谢昌卫,赵林,等.兰州马衔山多年冻土活动层厚度估算及影响因素分析[J].冰川冻土,2015,37(6):1447.
    [36]孙国钧,赵松岭.甘肃省马衔山地区植被特征分析[J].西北植物学报,1995,15(5):115.
    [37]谢昌卫,赵林,吴吉春,等.兰州马衔山多年冻土特征及变化趋势分析[J].冰川冻土,2010,32(5):885.
    [38]XIE Chang-wei,GOUGH W A,TAM A,et al.Characteristics and persistence of relict high-altitude permafrost on Mahan Mountain,Loess Plateau,China[J].Permafrost and Periglacial Process,2013,24(D10):202.
    [39]李作福,李树德,王银学.兰州马衔山多年冻土特征与环境因素的关系[J].冰川冻土,1993,15(1):86.
    [40]陈相红.地面反射率与若干气象因子关系的初步分析[J].成都气象学院学报,1999,14(3):233.
    [41]李国平,肖杰.青藏高原西部地面反射率的日变化以及与若干气象因子的关系[J].地理科学,2007,27(1):63.
    [42]陈建绥.中国地表反射率的分布及变化[J].地理学报,1964,30(2):91.
    [43]盛裴轩,毛节泰,李建国,等.大气物理学[M].北京:北京大学出版社,2003.
    [44]GORBUNOV A P.Permafrost in the mountains of Central Asia[C]//Proceedings of the Third International Conference on Permafrost.Ottawa:National Research Council of Canada,1978:375.
    [45]KING L.Zonation and ecology of high mountain permafrost in Scandinavia[J].Geografiska Annaler,1986,68(3):139.
    [46]邱国庆,黄以职,李作福.中国天山多年冻土特征[C]//第二届全国冻土会议论文选集.兰州:甘肃人民出版社,1982:26.
    [47]程国栋.局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J].中国科学:D辑,2003,33(6):602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700