用户名: 密码: 验证码:
高超声速飞行器控制输入时滞特性分析及主动鲁棒控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Input Time-Delay Characteristic Analysis and Active Robust Control for an Air-Breathing Hypersonic Vehicle
  • 作者:秦伟伟 ; 秦庆强 ; 赵欣 ; 扈晓翔 ; 何兵 ; 刘刚
  • 英文作者:Qin Weiwei;Qin Qingqiang;Zhao Xin;Hu Xiaoxiang;He Bing;Liu Gang;Rocket Force University of Engineering;Weapon Office at CETC of Rocket Force;
  • 关键词:高超声速飞行器 ; 输入时滞 ; 多步预测 ; 主动鲁棒控制
  • 英文关键词:hypersonic vehicle;;input delays;;multi-step prediction;;active robust control
  • 中文刊名:HKBQ
  • 英文刊名:Aero Weaponry
  • 机构:火箭军工程大学;火箭军驻中国电子科技集团办公室;
  • 出版日期:2018-10-22 10:39
  • 出版单位:航空兵器
  • 年:2018
  • 期:No.307
  • 基金:国家自然科学基金项目(61503392; 61403399);; 陕西省自然科学基金项目(2015JQ6213);; 航空科学基金项目(201501U8001)
  • 语种:中文;
  • 页:HKBQ201805007
  • 页数:7
  • CN:05
  • ISSN:41-1228/TJ
  • 分类号:35-41
摘要
本文研究了采用主动时滞补偿的主动鲁棒控制来解决高超声速飞行器的输入时滞问题。由于高超声速飞行器的高动态特性,使得系统存在强不确定性、高非线性、强耦合性、输入时滞等问题,控制系统的设计中存在许多难题。因此,设计一个能够克服时滞影响的控制算法是十分必要的。本文首先采用频域方法分析了输入时滞特性影响;然后,基于超前预测的时滞补偿策略,通过设计一个状态观测器对系统状态进行估计,进而设计多步预测补偿算法来实现时滞补偿;最后,结合鲁棒控制方法提出了面向时滞补偿的高超声速飞行器主动鲁棒控制算法。该种控制策略不仅可以解决参数模型的不确定性的鲁棒稳定性问题,同时也保证了输入时滞情况下的系统状态稳定。数值仿真的结果证实了该控制策略的有效性。
        The design of active robust controller based on delay state compensation for a class of flexible air-breathing hypersonic vehicles with input delays is described in this paper. Due to the high dynamic characteristics of hypersonic vehicle,the strong uncertainties,high nonlinearity,strong coupling,and control input time delays are challenging problems in the design of its control system. Therefore,it is necessary to design a control method that can handle input time delays. Firstly,the frequency domain method is used to analysis the influence of the input time delays. Based on the time delay compensation strategy of advance prediction,a state observer is designed to estimate the system state,and then a multi-step predictive compensation algorithm is designed to compensate the time delays. Finally,an active robust control algorithm for hypersonic vehicle with time delay compensation is proposed. This control strategy can not only solve the problem of robust stability of parametric model uncertainties,but also ensure the stability of the system with input delays. Numerical simulation results confirm the effectiveness of the control strategy.
引文
[1]Mirmirani M,Wu C,Clark A,et al. Modeling for Control of a Generic Airbreathing Hypersonic Vehicle[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit,San Francisco,Carolina,2005.
    [2]Wang Q,Stengel R F. Robust Nonlinear Control of a Hypersonic Aircraft[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit,Porland,OR,1999:413-423.
    [3]Xu H J,Mirmirani M,Ioannou P A. Robust Neural Adaptive Control of a Hypersonic Aircraft[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit,Austin,Texas,2003:1-8.
    [4] Xu H J,Ioannou P A,Mirmirani M. Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle[J].Journal of Guidance,Control and Dynamics,2004,27(5):829-838.
    [5]Parker J T,Serrani A,Yurkovich S,et al. Control-Oriented Modeling of an Air-Breathing Hypersonic Vehicle[J].Journal of Guidance,Control,and Dynamics,2007,30(3):856-869.
    [6]Fiorentini L,Serrani A,Bolender M A,et al. Nonlinear Robust/Adaptive Controller Design for an Air-Breathing Hypersonic Vehicle Model[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit,Hilton Head,South Carolina,2007:1-16.
    [7]Fiorentini L,Serrani A,Bolender M A,et al. Nonlinear Robust Adaptive Control of Flexible Air-Breathing Hypersonic Vehicles[J]. Journal of Guidance,Control,and Dynamics,2009,32(2):401-416.
    [8] Wilcox Z D,MacKunis W,Bhat S,et al. LyapunovBased Exponential Tracking Control of a Hypersonic Aircraft with Aero Thermoelastic Effects[J]. Journal of Guidance,Control,and Dynamics,2010,33(4):1213-1224.
    [9]Groves K P,Serrani A,Yurkovich S,et al. Anti-Windup Control for an Air-Breathing Hypersonic Vehicle Model[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit,Keystone,Colorado,2006.
    [10]Petersen C,Baldwiny M,Kolmanovsky I. Model Predictive Control Guidance with Extended Command Governor Inner-Loop Flight Control for Hypersonic Vehicles[C]∥AIAA Guidance,Navigation,and Control(GNC)Conference,Boston,MA,2013.
    [11]Qin Weiwei,Liu Jieyu,Liu Gang,et al. Robust Parameter Dependent Receding Horizon H∞Control of Flexible Air-Breathing Hypersonic Vehicles with Input Constraints[J]. Asian Journal of Control,2015,17(2):508-522.
    [12]秦伟伟,刘刚,汪立新,等.基于参数依赖滚动时域H∞控制的高超声速飞行器控制[J].控制与决策,2014,29(3):403-410.Qin Weiwei,Liu Gang,Wang Lixin,et al. Parameter Dependent Receding Horizon H∞Control for a Hypersonic Vehicle[J]. Control and Decision,2014,29(3):403-410.(in Chinese)
    [13] Jiang Wei,Wang Hongli,Lu Jinghui,et al. HOSVDBased LPV Modeling and Mixed Robust H2/H∞Control for Air-Breathing Hypersonic Vehicle[J]. Journal of Systems Engineering and Electronics,2016,27(1):183-191.
    [14]张广豪,郭宏宇,秦伟伟,等.基于PD-RMPC算法解决弹性体高超声速飞行器的输入饱和与状态约束问题[J].航空兵器,2017(3):33-44.Zhang Guanghao,Guo Hongyu,Qin Weiwei,et al. PDRMPC for a Flexible Air-Breathing Hypersonic Vehicle with Input Saturation and State Constraints[J]. Aero Weaponry,2017(3):33-44.(in Chinese)
    [15] Luck R,Ray A. An Observer-Based Compensator for Distributed Delays[J]. Automatica,1999,26(5):903-908.
    [16]Liu H,Brandel F. Compensator Design for Large Time Delay in a Flight Control System[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700