单斜相与四方相混合晶相组成ZrO_2负载镍催化剂催化顺酐选择性加氢
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selective hydrogenation of maleic anhydride catalyzed by supported nickel catalysts on ZrO_2 of monoclinic and tetragonal mixed crystal phase
  • 作者:赵丽丽 ; 张因 ; 吴天杰 ; 赵敏 ; 赵江红 ; 王永钊 ; 赵永祥
  • 英文作者:Zhao Lili;Zhang Yin;Wu Tianjie;Zhao Min;Zhao Jianghong;Wang Yongzhao;Zhao Yongxiang;School of Chemistry and Chemical Engineering,Engineering Research Center for Fine Chemicals of Ministry of Education,Shanxi University;Laboratory of Applied Catalysis and Green Chemical Engingeering,Institute of Coal Chemistry,Chinese Academy of Sciences;
  • 关键词:催化化学 ; Ni/ZrO_2催化剂 ; 顺酐 ; 选择性加氢 ; 表面结构 ; 氧空位
  • 英文关键词:catalytic chemistry;;Ni/ZrO_2 catalysts;;maleic anhydride;;selective hydrogenation;;surface structure;;oxygen vacancies
  • 中文刊名:GYCH
  • 英文刊名:Industrial Catalysis
  • 机构:山西大学化学化工学院精细化学品教育部工程研究中心;中国科学院山西煤炭化学研究所应用催化与绿色化工实验室;
  • 出版日期:2019-05-15
  • 出版单位:工业催化
  • 年:2019
  • 期:v.27;No.248
  • 基金:国家自然科学基金青年科学基金项目(21303097);国家自然科学基金面上项目(2167031118);; 国家自然基金-山西煤基低碳联合基金重点项目(U1710221)
  • 语种:中文;
  • 页:GYCH201905009
  • 页数:8
  • CN:05
  • ISSN:61-1233/TQ
  • 分类号:37-44
摘要
通过调控水热法制备条件制备同为单斜相和四方相混合晶相组成、但织构性质和表面结构性质不同的两种ZrO_2载体,采用浸渍法制备镍质量分数为10%的Ni/ZrO_2催化剂,考察不同反应温度[(150~240)℃]和氢气压力[(3~7)MPa]条件下两种ZrO_2载体负载镍催化剂的顺酐加氢性能。采用XRD、H_2-TPR、H_2-TPD和拉曼光谱等对催化剂进行表征。结果表明,与镍物种发生较强相互作用的ZrO_2负载镍催化剂具有较高的■键加氢活性与选择性,几乎没有■加氢活性,在所考察的反应温度和反应压力范围,催化剂上丁二酸酐选择性均高于95.1%,γ-丁内酯选择性均低于4.9%。与之不同,与镍物种发生较弱相互作用的ZrO_2负载镍催化剂具有较弱的■键加氢活性,然而,该催化剂表现出一定的■加氢活性,并且其■加氢活性随反应温度或反应压力的提高而显著提高。在反应温度240℃、氢气压力5 MPa条件下,γ-丁内酯选择性高达60.6%。推测晶相组成相似的两种ZrO_2载体负载镍催化剂明显的■加氢性能差异与其表面结构性质不同有关。
        Two kinds of ZrO_2 supports,both composed of monoclinic and tetragonal phases,but with different texture properties and surface structures,were prepared by adjusting hydrothermal conditions.Ni/ZrO_2 catalysts mith Ni mass fraction of 10% were prepared using an impregnation method and were characterized by XRD,H_2-TPR,H_2-TPD and Raman techniques.Their catalytic performances in maleic anhydride hydrogenation were tested under different reaction temperature(150-240)℃and H_2 pressure (3-7)MPa.Results showed that Ni/ZrO_2 catalyst with strong interaction of nickel species and ZrO_2 support had higher ■ hydrogenation activity,whereas it had almost no ■ hydrogenation activity.Within the range of reaction temperature and H_2 pressure investigated,the selectivity of the catalyst for succinic anhydride was above 95.1%,correspondingly,the selectivity ofγ-butyrolactone was less than 4.9%.Ni/ZrO_2 catalyst with weaker interaction of nickel species and ZrO_2 support had lower ■ hydrogenation activity,whereas it exhibited ■ hydrogenation,and the ■ hydrogenation activity increased significantly with rise of reaction temperature and H_2 pressure.The selectivity towardsγ-butyrolacetone was as high as 60.6% at reaction temperature of 210℃ and H_2 pressure of 5 MPa.It was inferred that the obvious difference of ■ hydrogenation activity of two ZrO_2 supported nickel catalysts was related to the different surface structure properties of ZrO_2 supports.
引文
[1]Trivedi B C,Culbertson B M. Maleic anhydride[M]. New York:Plenum Press,2013:132-133.
    [2]Li J,Tian W P,Shi L. Hydrogenation of maleic anhydride to succinic anhydride over Ni/HY-Al2O3[J]. Industrial&Engineering Chemistry Research,2010,49:11837-11840.
    [3]Lopez A,Bitzer T,Heller T,et al. Adsorption of maleic anhydride on Si(100)-2×1[J]. Surface Science,2001,477:219-226.
    [4]Jung S M,Godard E,Jung S Y,et al. Liquid-phase hydrogenation of maleic anhydride over Pd/Si O2:effect of tin on catalytic activity and deactivation[J]. Journal of Molecular Catalysis A:Chemical,2003,198:297-302.
    [5]Ma Y,Huang Y Q,Cheng Y W,et al. Selective liquidphase hydrogenation of maleic anhydride to succinic anhydride on biosynthesized Ru-based catalysts[J]. Catalysis Communications,2014,57:40-44.
    [6]Yu Y,Zhan W C,Guo Y,et al. Gas-phase hydrogenation of maleic anhydride toγ-butyrolactone over Cu-Ce O2-Al2O3catalyst at atmospheric pressure:effects of the residual sodium and water in the catalyst precursor[J]. Journal of Molecular Catalysis A:Chemical,2014,395:392-397.
    [7]Meyer C I,Marchi A J,Monzon A,et al. Deactivation and regeneration of Cu/Si O2catalyst in the hydrogenation of maleic anhydride[J]. Applied Catalysis A:General,2009,367:122-129.
    [8]Li J,Ren Y H,Yue B,et al. Ni/Al2O3catalysts derived from spinel Ni Al2O4for low-temperature hydrogenation of maleic anhydride to succinic anhydride[J]. Chinese Journal of Catalysis,2017,38:1166-1173.
    [9]Guo S F,Shi L. Synthesis of succinic anhydride from maleic anhydride on Ni/diatomite catalysts[J]. Catalysis Today,2013,212:137-141.
    [10]Meyer C I,Regenhardt S A,Bertone M E,et al. Gasphase maleic anhydride hydrogenation over Ni/Si O2-Al2O3catalysts:effect of metal loading[J]. Catalysis Letters,2003,143:1067-1073.
    [11]Regenhardt S A,Meyer C I,Garetto T F,et al. Selective gas phase hydrogenation of maleic anhydride over Ni-supported catalysts:effect of support on the catalytic performance[J]. Applied Catalysis A:General,2012,449:81-87.
    [12]孟志宇,张因,赵丽丽,等.不同晶型Ti O2负载镍催化剂催化顺酐液相加氢[J].高等学校化学学报,2015,36(9):1779-1785.Meng Zhiyu,Zhang Yin,Zhao Lili,et al. Liquid phase hydrogenation of maleic anhydride over Ni/Ti O2catalysts with different Ti O2polymorphs[J]. Chemical Journal of Chinese Universities,2015,36(9):1779-1785.
    [13]Liao X,Zhang Y,Hill M,et al. Highly efficient Ni/Ce O2catalyst for the liquid phase hydrogenation of maleic anhydride[J]. Applied Catalysis A:General,2014,488:256-264.
    [14]Zhao L L,Zhao J H,Wu T J,et al. Synergistic effect of oxygen vacancies and Ni species on tuning selectivity of Ni/Zr O2catalyst for hydrogenation of maleic anhydride into succinic anhydride andγ-butyrolacetone[J]. Nanomaterials,2019,9:406.
    [15]Perry C H,Lu F,Liut D W,et al. Phonons and phase transitions in zirconia[J]. Journal of Raman Spectroscopy,1990,21:577-584.
    [16]Puigdollers A R,Illas F,Pacchioni G. Structure and properties of zirconia nanoparticles from density functional theory calculations[J]. Journal of Physical Chemistry C,2016,120:4392-4402.
    [17]Li S R,Zhang C X,Huang Z Q,et al. A Ni@Zr O2nanocomposite for ethanol steam reforming:enhanced stability via strong metal-oxide interaction[J]. Chemical Communications,2013,49:4226-4228.
    [18]Yashima M,Ohtake K,Kakihana M,et al. Determination of tetragonal-cubic phase boundary of Zr1-xRxO2-x/2(R=Nd,Sm,Y,Er and Yb)by Raman scattering[J]. Journal of Physics and Chemistry of Solids,1996,57:17-24.
    [19]Shi L,Tin K C,Wong N B. Thermal stability of zirconia membranes[J]. Journal of Materials Science,1999,34:3367-3374.
    [20]Garvie R C. The occurrence of metastable tetragonal zirconia as a crystallite size effect[J]. Journal of Physical Chemistry,1965,69:1238-1243.
    [21]Yashima M,Ohtake K,Arashi H,et al. Determination of cubic-tetragonal phase boundary in Zr1-XYXO2-X/2solid solutions by Raman spectroscopy[J]. Journal of Applied Physics,1993,74:7603-7605.
    [22]Tosoni S,Chen H Y T,Pacchioni G. A DFT study of Ni clusters deposition on titania and zirconia(101)surfaces[J]. Surface Science,2016,646:230-238.
    [23]Lo'pez E F,Escribano V S,Panizza M,et al. Vibrational and electronic spectroscopic properties of zirconia powders[J]. Journal of Materials Chemistry,2001,11:1891-1897.
    [24]Martensson A S,Nyberg C,Andersson S. Adsorption of hydrogen on a stepped nickel surface[J]. Surface Science,1988,205:12-24.
    [25]Hengne A M,Samal A K,Enakonda L R,et al. NiSn-supported Zr O2catalysts modified by indium for selective CO2hydrogenation to methanol[J]. ACS Omega,2018,3:3688-3701.
    [26]Hu Q,Yang L,Fan G L,et al. Hydrogenation of biomassderived compounds containing a carbonyl group over a copper-based nanocatalyst:Insight into the origin and influence of surface oxygen vacancies[J]. Journal of Catalysis,2016,340:184-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700