潮流发电试验场水动力特性数学模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mathematical modeling of hydrodynamic characteristics of tidal power generation test field
  • 作者:李大鸣 ; 张弘强 ; 卜世龙 ; 李彦卿 ; 唐星辰 ; 甄珠 ; 陈硕
  • 英文作者:LI Daming;ZHANG Hongqiang;BU Shilong;LI Yanqing;TANG Xingchen;ZHEN Zhu;CHEN Shuo;State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University;
  • 关键词:潮流发电 ; 装置概化 ; 水动力特性 ; 水动力学模型
  • 英文关键词:tidal power generation;;tidal turbine generalization;;hydrodynamic characteristics;;hydrodynamic model
  • 中文刊名:SFXB
  • 英文刊名:Journal of Hydroelectric Engineering
  • 机构:天津大学水利工程仿真与安全国家重点实验室;
  • 出版日期:2017-12-25
  • 出版单位:水力发电学报
  • 年:2017
  • 期:v.36;No.185
  • 基金:国家自然科学基金(51079095;51021004)
  • 语种:中文;
  • 页:SFXB201712013
  • 页数:16
  • CN:12
  • ISSN:11-2241/TV
  • 分类号:106-121
摘要
以普陀山岛–葫芦岛潮流能试验场为研究区域,三维、二维数学模型相结合,模拟分析了发电装置对试验场局部近场、大范围远场水动力的影响情况。提出一种基于能量方程的装置概化方法,即采用流场上下游沿程阻力损失量化装置对水流影响,并对概化后各组合等效与综合糙率进行回归分析,得到来流流速与综合糙率的函数关系。建立三维局部流场模型,利用计算流体动力学(CFD)软件模拟分析了装置在7种转速-流速组合下的局部流场分布。采用有限元法(FEM)离散二维浅水环流方程,建立二维潮流数学模型,并将综合糙率函数关系代入,通过修改装置所在网格糙率来模拟装置产生的影响。结果表明,全体装置布设时某个涨落潮历时下、全潮过程下,装置对流场的影响范围与潮流流速、装置泊位附近地形有关,离装置越远,装置对流场影响越小。整体上,装置对远场流速影响程度较小,流速变化量最小在2%左右,最大不超过布设前流速8%。
        Three-and two-dimensional models are used in combination to simulate and analyze the influence of tidal turbines on the hydrodynamic conditions in the near-field and far-field, and applied in a case study of the Putuo-Hulu islands tidal energy test field. We present a method for generalization of tidal turbines that, based on the energy equation, calculates resistance loss in the flow passage to determine the equivalent roughness of the turbines, construct a three-dimensional model of the turbines' near-field flow in the frame of Computational Fluid Dynamics(CFD), and simulate and analyze the velocity distributions in seven conditions of different combinations of turbine rotating speed and inflow velocity. A two-dimensional tidal model is developed on the finite element method(FEM) solving the shallow water equations, and the influence of turbine operation is simulated using larger roughness at the grid nodes occupied by the turbines. Results show that the size of affected zone depends on the tidal flow velocity and the terrain near the berth, and that the further away from the turbines, the less incidence from the turbines into the flow field. In the far-field, the influence is not significant and the flow velocity varies in the range of 2%-8% relative to the velocity before the turbines.
引文
[1]Bai L,Spence R,Dudziak G.Investigation of the influence of array arrangement and spacing on Tidal Energy Converter(TEC)performance using a 3D CFDModel[C]//Proceedings of the 8th European Wave and Tidal Energy Conference,Uppsala,Sweden,2009:654-660.
    [2]O’Doherty D M,Mason-Jones A,Morris C,et al.Interaction of marine turbines in close proximity[C]//Proceedings of the 9th European Wave and Tidal Energy Conference,University of Southampton,2011:5-9.
    [3]Couch S,Bryden I.The impact of energy extraction on tidal flow development[C]//Proceedings of the 3rd IMar EST International Conference on Marine Renewable Energy,2004.
    [4]Blunden L,Bahaj A.Initial evaluation of tidal stream energy resources at Portland Bill,UK[J].Renewable Energy,2006,31(2):121-132.
    [5]Blunden L,Bahaj A.Effects of tidal energy extraction at Portland Bill,Southern UK predicted from a numerical model[C]//Proceedings of EWTEC,2007:11-14.
    [6]Bryden I,Couch S.How much energy can be extracted from moving water with a free surface:A question of importance in the field of tidal current energy[J].Renewable Energy,2007,32(11):1961-1966.
    [7]Karsten R,Mc Millan M,Lickley M,et al.Assessment of tidal current energy in the Minas Passage,Bay of Fundy[J].Proceedings of IMech E,Part A:J.Power Energy,2008,222(5):493-507.
    [8]Myers L E,Bahaj A S.An experimental investigation simulating flow effects in first generating marine current energy converter arrays[J].Renewable Energy,2012,37(1):28-36.
    [9]辛小鹏,邵雪明,邓见,等.串列布置双转子海流机水动力性能预测[J].浙江大学学报(工学版),2011,45(7):1227-1231.XIN Xiaopeng,SHAO Xueming,DENG Jian,et al.Hydrodynamic performance prediction of marine current turbine with dual rotor in tandem arrangement[J].Journal of Zhejiang University(Engineering Science),2011,45(7):1227-1231.(in Chinese)
    [10]安佰娜.潮流能发电场尾流场数值模拟及其多机组影响规律研究[D].青岛:中国海洋大学,2012.AN Baina.Numerical analysis of the wake and interaction effect analysis for tidal arrays in the tidal farm[D].Qingdao:China Ocean University,2012.(in Chinese)
    [11]袁金雄.潮流能提取水动力响应数值研究[D].杭州:浙江大学,2012.YUAN Jinxiong.Numerical simulation on hydrodynamic response to tidal current energy extraction[D].Hangzhou:Zhejiang University,2012.(in Chinese)
    [12]侯放.基于FVCOM的舟山群岛海域潮流能分析[D].青岛:中国海洋大学,2012.HOU Fang.The analysis of tidal energy in Zhoushan Island based on FVCOM[D].Qingdao:China Ocean University,2012.(in Chinese)
    [13]李林杰.潮流能发电场水轮机排布对流场影响研究[D].青岛:中国海洋大学,2013.LI Linjie.Research on effect of turbines array on flow field in tidal farm[D].Qingdao:China Ocean University,2013.(in Chinese)
    [14]马朵.水平轴海流能水轮机水动力学特性的数值研究[D].西安:西安理工大学,2013.MA Duo.Simulation research of hydrodynamic characteristics of tidal turbine with horizontal axis[D].Xi’an:Xi’an University of Technology,2013.(in Chinese)
    [15]徐利斌.舟山港锚地规划研究[D].上海:上海海事大学,2005.XU Libin.Planning research of anchorage in Zhoushan Port[D].Shanghai:Shanghai Maritime University,2005.(in Chinese)
    [16]EMEC LTD.Assessment of tidal energy resource[EB/OL].http://www.emec.org.Uk/assessment-of-tidalenergy-resource/,2012-4-11/2015-4-6.
    [17]Andersen O B.Global ocean tides from ERS-1 and Topex/Poseidon altimeter[J].Journal of Geophysical Research Atmospheres,1995,100(C12):25249-25259.
    [18]Yang C J,Hoang A D.A study on effect of longitudinal and lateral spaces in tidal farm by CFX[C].AWTEC 2012.Asian Wave and Tidal Conference Series.Nov,27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700