硝基苯酚胁迫下外源褪黑素对水稻幼苗生长及生理特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of exogenous melatonin on the growth and physiological characteristics of Oryza sativa L. seedlings under nitrophenol stress
  • 作者:赛闹汪青 ; 达梦婷 ; 曹佳鑫 ; 石珍珍 ; 贾凌云 ; 孙坤 ; 冯汉青
  • 英文作者:Sainao Wang-Qing;Da Meng-Ting;Cao Jia-Xing;Shi Zhen-Zhen;Jia Ling-Yun;Sun Kun;Feng Han-Qing;College of Life Sciences,Northwest Normal University;
  • 关键词:硝基苯酚 ; 水稻幼苗 ; 褪黑素 ; 缓解
  • 英文关键词:Nitrophenol;;Oryza sativa seedlings;;Melatonin;;Alleviation
  • 中文刊名:WZXY
  • 英文刊名:Plant Science Journal
  • 机构:西北师范大学生命科学学院;
  • 出版日期:2018-12-23 17:46
  • 出版单位:植物科学学报
  • 年:2018
  • 期:v.36
  • 基金:国家自然科学基金(31870246,31560070);; 甘肃省高等学校科研项目(2015A-007);; 甘肃省重点研发计划项目(18YF1NA051);; 甘肃省高校基本科研业务费;; 西北师范大学青年创新团队项目~~
  • 语种:中文;
  • 页:WZXY201806012
  • 页数:11
  • CN:06
  • ISSN:42-1817/Q
  • 分类号:98-108
摘要
采用液体培养实验方法,研究硝基苯酚胁迫对水稻(Oryza sativa L.)幼苗生长、抗氧化特性、光系统Ⅱ(PSⅡ)光合特性的影响,以及添加外源褪黑素对缓解硝基苯酚胁迫的作用。结果显示,随着硝基苯酚胁迫浓度的升高,水稻幼苗株高、根长、地下部干重、地上部干重、全株干重和叶片PSⅡ实际光化学效率[Y(Ⅱ)]、光化学淬灭系数(q P)、PSⅡ电子传递速率(ETR)、叶绿素含量均有所下降,而叶片非光化学淬灭系数(qN、NPQ)上升;同时,根系活性氧[过氧化氢(H_2O_2)和超氧阴离子(O·-2)]积累量、抗氧化酶[超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)]活性,以及渗透调节物质(可溶性蛋白和可溶性糖)含量呈先升高后降低的趋势。在非硝基苯酚胁迫下,与对照组相比,添加外源褪黑素显著提高了幼苗地下部干重、根系可溶性糖含量和SOD活性、叶片PSⅡ光化学效率和叶绿素含量。与单独添加硝基苯酚处理相比,硝基苯酚+褪黑素复合处理显著缓解了硝基苯酚胁迫对幼苗生长、叶片PSⅡ光化学效率和叶绿素合成的抑制作用;降低了根系活性氧水平、抗氧化酶活性和渗透调节物质含量。研究结果表明添加外源褪黑素能够显著缓解硝基苯酚胁迫对水稻幼苗生长、根系活性氧水平、抗氧化酶活性、叶片PSⅡ光化学效率及叶绿素合成的不良影响,提高水稻幼苗对硝基苯酚胁迫的适应性。
        We investigated the effects of nitrophenol stress on the growth,antioxidant properties,and PSⅡ photosynthetic characteristics of Oryza sativa L. seedlings,as well as the alleviative effects of exogenous melatonin on nitrophenol stress,through liquid culture experiments.Results showed that with the increase in nitrophenol concentration,the plant height,rootlength,below-ground part dry weight,above-ground part dry weight,plant dry weight,effective photochemical quantum yield of PSⅡ( Y(Ⅱ)),photochemical quenching coefficient( q P),non-cyclic electron-transport through PSⅡ( ETR),and chlorophyll content of leaves all decreased. Conversely, the non-photochemical quenching coefficient( q N, NPQ) of the leaves increased with increasing nitrophenol concentration. Simultaneously,the accumulation of reactive oxygen species( ROS)( including hydrogen peroxide and superoxide anion radicals( H_2O_2 and O·-2)),activity of antioxidant enzymes( including superoxide dismutase( SOD),peroxidase( POD),catalase( CAT),and ascorbate peroxidase( APX)),and content of the osmotic regulator( soluble protein and sugar) of roots first increased then decreased with increasing nitrophenol concentration. Without nitrophenol stress,the below-ground part dry weight,soluble sugar content,and SOD activity of the roots,PSⅡ photochemical efficiency,and chlorophyll content of the leaves all significantly increased under exogenous melatonin treatment compared with the control. In comparison with nitrophenol treatment,the combination of nitrophenol and melatonin treatment significantly alleviated the inhibition of nitrophenol stress on seedling growth,PSⅡ photochemical efficiency,and chlorophyll synthesis,and reduced ROS levels,antioxidant enzyme activities,and osmotic regulator content in roots. Thus,the addition of exogenous melatonin can significantly alleviate the adverse effects of nitrophenol stress on O. sativa L. seedlings.
引文
[1]刘维岗.上流式厌氧污泥床反应器(UASB)处理硝基酚废水研究[D].青岛:中国海洋大学,2006.
    [2]Song W,Zheng Z,Rami AS,Zhou T,Hang D.Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation[J].Radia Phys&Chem,2002,65(4):559-563.
    [3]张鲜.工业污水中硝基苯酚三种异构体含量的测定与去除方法研究[D].沈阳:沈阳师范大学,2013.
    [4]Sun SP,Lemley AT.P-nitrophenol degradation by a heterogeneous fenton-like reaction on nano-magnetite:Process optimization,kinetics,and degradation pathways[J].JMol Catal A-Chem,2011,349(1):71-79.
    [5]张逸,于萍,罗运柏,李海港.硝基苯酚类的快速吸附与降解[J].环境工程学报,2012,6(3):787-792.Zhang Y,Yu P,Luo YB,Li HX.Rapid adsorption and degradation of nitrophenol solution with activated carbon and Fenton's reagent[J].Techniques and Equipment for Environmental Pollution Control,2012,6(3):787-792.
    [6]刘星邑,温玉娟,刘欢,杨悦锁.土壤中对硝基酚迁移转化和去除技术研究进展[J].农业环境科学学报,2017,36(11):2161-2170.Liu XY,Wen YJ,Liu H,Yang YR.Research review of transport fate and techniques for removing P-nitrophenol from soil[J].Journal of Agro-Environment Science,2017,36(11):2161-2170.
    [7]王泽港,骆剑峰,高红明,万定珍,葛才林,罗时石,杨建昌.1,2,4-三氯苯和萘对水稻抽穗期叶片光合特性的影响[J].中国农业科学,2005,38(6):1113-1119.Wang ZX,Luo JF,Gao HM,Wai DZ,Ge CL,Luo SZ,Yang JC.Effects of 1,2,4-trichlorobenzene and naphthalene stress on photosynthetic characteristics of rice at heading period[J].Scientia Agricultura Sinica,2005,38(6):1113-1119.
    [8]徐向东,孙艳,郭晓芹,孙波,张坚.高温胁迫下外源褪黑素对黄瓜幼苗光合作用及叶绿素荧光的影响[J].核农学报,2011,25(1):179-184.Xu XD,Sun Y,Guo XQ,Sun B,Zhang J.Effect of exogenous melatonin on photosynthesis and chlorophyll fluorescence parameters in leaves of cucumber seedlings under high temperature stress[J].Acta Agriculturae Nucleatae Sinica,2011,25(1):179-184.
    [9]Liang C,Zhang G,Li W.Melatonin delays leaf senescence and enhances salt stress tolerance[J].J Pineal Res,2015,59(1):91-101.
    [10]刘仕翔,黄益宗,罗泽娇,黄永春,保琼莉.外源褪黑素处理对镉胁迫下水稻种子萌发的影响[J].农业资源与环境学报,2016,35(6):1034-1041.Liu SX,Huang YZ,Luo ZJ,Huang YC,Bao QL.Effects of exogenous melatonin on germination of rice seeds under Cd stresses[J].Journal of Agricultural Resources and Environment,2016,35(6):1034-1041.
    [11]徐芳,周海鹏,郭早霞,于宏安,袁玉川.植物褪黑素及其抗逆性研究[J].基因组学与应用生物学,2013,32(2):260-266.Xu F,Zhou HP,Guo ZX,Yu HA,Yuan YC.The melatonin and its resistance to stress in plants[J].Genomics and Applied Biology,2013,32(2):260-266.
    [12]张娜,张海军,杨荣超,黄韫宇,郭仰东.褪黑素在植物中的功能研究进展[J].中国农学通报,2012,28(9):16-20.Zhang N,Zhang HJ,Yang RC,Huang YY,Guo YD.The advances on functions study of melatonin in plants[J].Chinese Agricultural Science Bulletin,2012,28(9):16-20.
    [13]孙莎莎,巩彪,温丹,王秀峰,魏珉.对羟基苯甲酸胁迫下褪黑素对黄瓜胚根生理生化特性的影响[J].应用生态学报,2016,27(3):897-903.Sun SS,Gong B,Wen D,Wang XF,Wei M.Effect of exogenous melatonin on physiological and biochemical characteristics of cucumber radicles under p-hydroxybenzoic acid[J].Chinese Journal of Applied Ecology,2016,27(3):897-903.
    [14]王芳,常盼盼,陈永平,彭云玲,方永丰,王汉宁.外源NO对镉胁迫下玉米幼苗生长和生理特性的影响[J].草业学报,2013,22(2):178-186.Wang F,Chang PP,Chen YP,Peng YL,Fang YF,Wang HN.Effect of exogenous nitric oxide on seedling growth and physiological characteristics of maize seedlings under cadmium stress[J].Acta Prataculturae Sinica,2013,22(2):178-186.
    [15]冯汉青,杜变变,王庆文,王荣方,贾凌云,孙坤,周田宝.镉胁迫下活性炭对小麦幼根的保护作用[J].生态学报,2016,36(10):1962-2868.Feng HQ,Du BB,Wang QW,Wang RF,Jia LY,Sun K,Zhou TB.The role of activated carbon in protecting the roots of wheat seedlings under cadmium[J].Acta Ecologica Sinica,2016,36(10):1962-2868.
    [16]Anjorin FB,Adejumo SA,Agboola L,Samuel YD.Proline,Soluble sugar,leaf starch and relative water contents of four maize varieties in response to different watering regimes[J].Cer Agr Mold,2016,49(3):51-62.
    [17]Achary VM,Jena S,Panda KK,Panda BB.Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L.[J].Ecotoxicol Environ Saf,2008,70(2):300-310.
    [18]Li XN,Yang YL,Jia LY,Chen H,Wei X.Zinc-induced oxidative damage,antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J].Ecotox Environ Safe,2013,89(11):150-157.
    [19]Demmig-Adams B,Adams WW.Xanthophyll cycle and light stress in nature:uniform response to excess direct sunlight among higher plant species[J].Planta,1996,198(3):460-470.
    [20]Donnini S,Guidi L,Degl'Innocenti E,Zocchi G.Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply[J].J Soil Sci Plant Nut,2013,176(5):734-724.
    [21]Arnon DI.Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris[J].Plant Physiol,1949,24(1):1-15.
    [22]杜晓,申晓辉.镉胁迫对珊瑚树和地中海荚蒾生理生化指标的影响[J].生态学杂志,2010,29(5):899-904.Du X,Shen XH.Effects of cadmium stress on physiological and biochemical indices of Viburnum odoratissimum and V.tinus seedlings[J].Chinese Journal of Ecology,2010,29(5):899-904.
    [23]刘宛,孙铁珩,李培军,周启星,梁文举,台培东,许华夏,张海荣.1,2,4-三氯苯胁迫对萌发大豆种子中活性氧的影响[J].生态学报,2002,13(12):1655-1658.Liu W,Sun TH,Li PJ,Zhou QX,Liang WJ,Tai PD,Xu HX,Zhang HR.Effects of 1,2,4-trichlorobenzene stress on active oxygen in germinated soybean seeds[J].Chinese Journal of Applied Ecology,2002,13(12):1655-1658.
    [24]Maxwell K,Johnson GN.Chlorophyll fluorescence-a practical guide[J].J Exp Bot,2000,51(345):659-668.
    [25]王泽港,葛才林,万定珍,郦志文,罗时石,杨建昌.1,2,4-三氯苯和萘对水稻幼苗生长的影响[J].农业环境科学学报,2006,25(6):1402-1407.Wang ZX,Ge CL,Wan DZ,Li ZW,Luo SZ,Yang JC.Effects of 1,2,4-trichlorobenzene and naphthalene on growth of rice seedling[J].Journal of Agro-Environment Science,2006,25(6):1402-1407.
    [26]刘星邑.对硝基酚的植物毒性及其微生物降解特性研究[D].沈阳:沈阳大学,2018.
    [27]李璇,岳红,王升,黄璐琦,马炯,郭兰萍.影响植物抗氧化酶活性的因素及其研究热点和现状[J].中国中药杂志,2013,38(7):973-978.Li X,Yue H,Wang S,Huang LQ,Ma J,Guo LP.Research of different effects on activity of plant antioxidant enzymes[J].China Journal of Chinese Materia Medica,2013,38(7):973-978.
    [28]Baker NR.A possible role for photosystemⅡin environmental perturbations of photosynthesis[J].Physiol Plantarum,1991,81(4):563-570.
    [29]杜青平,贾晓珊,袁保红.1,2,4-三氯苯对水稻种子萌发及幼苗生长的毒性机理[J].应用生态学报,2006,17(11):2185-2188.Du QP,Jia XS,Yuan BH.Toxic effects of 1,2,4-trichlorobenzene on rice seed germination and seedling growth[J].Chinese Journal of Applied Ecology,2006,17(11):2185-2188.
    [30]张艳玲.拟南芥DEG蛋白酶的胁迫响应分子机理研究[D].兰州:兰州大学,2008.
    [31]Reiter RJ,Guerrero JM,Escames G,Pappolla MA,Acu1acastroviejo D.Prophylactic actions of melatonin in oxidative neurotoxicity[J].Ann NY Acad Sci,1997,825(2):70-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700