三元(Co_(0.5)Cu_(0.5))_(100-x)Sn_x合金的热物理性质与液固相变机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermophysical properties and liquid-solid transition mechanisms of ternary(Co_(0.5)Cu_(0.5))_(100-x)Sn_x alloys
  • 作者:刘金明 ; 翟薇 ; 周凯 ; 耿德路 ; 魏炳波
  • 英文作者:Liu Jin-Ming;Zhai Wei;Zhou Kai;Geng De-Lu;Wei Bing-Bo;Department of Applied Physics,Northwestern Polytechnical University;
  • 关键词:热物理性质 ; 液固相变 ; 热扩散系数 ; 比热
  • 英文关键词:thermophysical property;;liquid-solid phase transition;;thermal diffusion coefficient;;specific heat
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西北工业大学应用物理系;
  • 出版日期:2016-10-18 13:51
  • 出版单位:物理学报
  • 年:2016
  • 期:v.65
  • 基金:国家自然科学基金(批准号:51327901,51271150,51571164,51506182);; 陕西省青年科技新星项目和西北工业大学翱翔人才计划资助的课题~~
  • 语种:中文;
  • 页:WLXB201622032
  • 页数:9
  • CN:22
  • ISSN:11-1958/O4
  • 分类号:300-308
摘要
本文系统研究了三元(Co_(0.5)Cu_(0.5))_(100-x)Sn_x(x=10,20,30,40,50 at%)合金的热物理性质及其在近平衡条件下的微观凝固组织特征.采用差示扫描量热法(DSC)确定了合金的液相限、固相限温度和熔化潜热,并建立了它们与合金成分之间的函数关系.实验发现,Sn元素的引入提高了液态三元(Co_(0.5)Cu_(0.5))_(100-x)Sn_x合金的过冷能力,当Sn含量为50 at%时,合金的过冷度达到最大值68 K.基于DSC曲线和微观组织形态确定了近平衡条件下合金的液固相变过程和室温下的相组成,发现当Sn含量低于30 at%时,初生相为(Co)相,而当Sn含量超过30 at%时,Co3Sn2相成为领先形核相.在293—473 K温度范围内,实验测定了固态三元(Co_(0.5)Cu_(0.5))_(100-x)Sn_x合金的热扩散系数和比热.结合所测定的固态合金密度,导出了三元(Co_(0.5)Cu_(0.5))_(100-x)Sn_x合金在室温293 K下的热导率,发现其随Sn含量的增加呈现先增大后减小的变化规律.
        The thermophysical properties and liquid-solid phase transition characteristics of ternary(Co_(0.5)Cu_(0.5))_(100-x)Sn_x(x =10,20,30,40 and 50 at%) alloys are systematically investigated.The liquidus temperature and latent heat of fusion,as well as the undercooling are determined by differential scanning calorimetry(DSC) method.Based on the measured data,their relationships with Sn content are fitted by polynomial functions.The liquidus temperature shows a decreasing tendency with the increase of Sn content.The undercooling of liquid(Co_(0.5)Cu_(0.5))_(100-x)Sn_xalloys significantly increases with increasing Sn amount,indicating that the addition of Sn element enhances the undercoolability.By using the laser-flash and DSC methods,the thermal diffusion coefficients and specific heats of solid ternary(Co_(0.5)Cu_(0.5))_(100-x)Sn_x alloys are respectively measured in a temperature range from 293 to 473 K.The thermal diffusion coefficients increase linearly as temperature rises.The thermal diffusion coefficient varies from 1.06 × 10-5to 1.12 × 10-5m2·s-1for ternary Co_(45)Cu_(45)Sn_(10) alloy,which is close to that of Co element but much lower than those of Cu and Sn elements in the same temperature range.However,the thermal diffusion coefficients of other(Co_(0.5)Cu_(0.5))_(100-x)Sn_xalloys are far less than that of ternary Co45Cu45Sn10 alloy.The specific heat shows an increasing trend with temperature,and drops apparently with increasing Sn amount.From the measured thermal diffusion coefficients,specific heats and densities,the thermal conductivities of ternary(Co_(0.5)Cu_(0.5))_(100-x)Sn_xalloys at 293 K are derived.With the Sn content increasing up to 40 at%,the thermal conductivities for(Co_(0.5)Cu_(0.5))_(100-x)Sn_xalloys monotonically decrease from 33.83 to 7.90 W·m-1·K-1,and subsequently increases slightly when the Sn content further increases up to 50 at%.In addition,on the basis of the DSC curves and solidification microstructures,the liquid-solid phase transitions are also explored.When the Sn content is less than 30 at%,the primary(Co) phase appears as coarse dendrites,whose volume fraction decreases as Sn content increases.Once Sn content exceeds 30 at%,the Co_3Sn_2 phase preferentially nucleates and grows during solidification,which occupies about 89% volume in the solidified Co_(30)Cu_(30)Sn_(40) alloy.The phase constitution investigation indicates that with the increase of the Sn content,the(Cu) solid solution phase disappears,whereas intermetallic compounds,including Cu_(41)Sn_(11),Cu_3Sn,and Cu_6Sn_5 phases successively precipitate from the alloy melts.The(Sn) solid solution phase even appears when Sn amount reaches 50 at%.
引文
[1]Gente C,Oehring M,Bormann R 1993 Phys.Rev.B 4813244
    [2]Miranda M G M,Estévez-Rams E,Martínez G,Baibich M N 2003 Phys.Rev.B 68 014434
    [3]Fan X,Mashimo T,Huang X,Kagayama T,Chiba A,Koyama K,Motokawa M 2004 Phys.Rev.B 69 094432
    [4]Yang W,Chen S H,Yu H,Li S,Liu F,Yang G C 2012Appl.Phys.A 109 665
    [5]Yan N,Wang W L,Dai F P,Wei B B 2011 Acta Phys.Sin.60 034602(in Chinese)[闫娜,王伟丽,代富平,魏炳波2011物理学报60 034602]
    [6]Munitz A,Venkert A,Landau P,Kaufman M J,Abbaschian R 2012 J.Mater.Sci.47 7955
    [7]Zhai W,Hu L,Zhou K,Wei B B 2016 J.Phys.D:Appl.Phys.49 165306
    [8]Curiotto S,Battezzati L,Johnson E,Pryds N 2007 Acta Mater.55 6642
    [9]Zang D Y,Wang H P,Dai F P,Langevin D,Wei B B2011 Appl.Phys.A 102 141
    [10]Du L,Wang L,Zheng B,Du H 2016 J.Alloy.Compd.663 243
    [11]Adhikari D,Jha I S,Singh B P 2010 Physica B 405 1861
    [12]Chen S W,Chang J S,Pan K,Hsu C M,Hsu C W 2013Metall.Mater.Trans.A 44 1656
    [13]Andersson C,Sun P,Liu J 2008 J.Alloy.Compd.45797
    [14]Chuang T H,Jain C C,Wu H M 2008 J.Electron.Mater.37 1734
    [15]Alvarado J L,Marsh C,Sohn C,Phetteplace G,Newell T 2007 Int.J.Heat Mass Tran.50 1938
    [16]Parker W J,Jenkins R J,Butler C P,Abbott G L 1961J.Appl.Phys.32 1679
    [17]Hofmeister A M 1999 Science 283 1699
    [18]Bocchini G F,Bovesecchi G,Coppa P,Corasaniti S,Montanari R,Varone A 2016 Int.J.Thermophys.37 1
    [19]Beck P,Goncharov A F,Struzhkin V V,Militzer B,Mao H,Hemley R J 2007 Appl.Phys.Lett.91 181914
    [20]Huang F,Chen R,Ding H,Su Y 2016 Int.J.Heat Mass Tran.100 428
    [21]Poteryaev A I,Skornyakov S L,Belozerov A S,Anisimov V I 2015 Phys.Rev.B 91 195141
    [22]Gaber A,Afify N 2002 Physica B 315 1
    [23]Zhou S Q,Ni R 2008 Appl.Phys.Lett.92 093123
    [24]Yu X,Hofmeister A M 2011 J.Appl.Phys.109 033516
    [25]Xuan Y,Huang Y,Li Q 2009 Chem.Phys.Lett.479264
    [26]Leitner J,Voňka P,SedmidubskyD,Svoboda P 2010Thermochim.Acta 497 7
    [27]Gale W F,Totememier T C 2004 Smithells Metals Reference Book(8th Ed.)(Amsterdam:Elsevier Publishers Ltd)pp1-8
    [28]Kubi?ta J,V?e?t’ál J 2000 J.Phase Equilib.21 125
    [29]Jiang M,Sato J,Ohnuma I,Kainuma R,Ishida K 2004Calphad 28 213
    [30]Gierlotka W,Chen S W,Lin S K 2007 J.Mater.Res.22 3158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700