用户名: 密码: 验证码:
露天与地下协同开采模式与方法研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Opencast to underground iron ore mining method
  • 作者:范晓明 ; 任凤玉 ; 肖冬 ; 毛亚纯
  • 英文作者:FAN Xiao-ming;REN Feng-yu;XIAO Dong;MAO Ya-chun;College of Resources and Civil Engineering,Northeastern University;Anqian Mining Corporation.,Ltd.,Anshan Iron and Steel Group;
  • 关键词:露天转地下开采 ; 过渡模式 ; 楔形过渡模式
  • 英文关键词:opencast-to-underground mining;;transition mode;;wedge-shaped transition mode
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:College of Resources and Civil Engineering Northeastern University;Anqian Mining Corporation.Ltd.Anshan Iron and Steel Group;
  • 出版日期:2018-07-15
  • 出版单位:Journal of Central South University
  • 年:2018
  • 期:v.25
  • 基金:Projects(41371437,61473072,61203214) supported by the National Natural Science Foundation of China;; Projet(N160404008) supported by the Fundamental Research Funds for the Central Universities,China
  • 语种:英文;
  • 页:ZNGY201807026
  • 页数:12
  • CN:07
  • ISSN:43-1516/TB
  • 分类号:283-294
摘要
在大型金属矿山露天开采的末期,需要经历露天开采转地下开采的过渡时期,但两者存在着相互干扰的问题,造成过渡期安全生产条件差和产能衔接困难。为了解决过渡期开采安全条件差和产量衔接困难等技术难题。本文以大孤山矿山为例,针对过渡期矿体条件,提出并建立了适合协同开采的楔形转接新型过渡模式,其完全取消了境界矿柱以及人工形成覆盖层的工艺,并将挂帮矿诱导冒落法开采技术与露天底部矿量陡帮延深开采技术有机结合,用于实际开采过程中。结果显示,1)露天境界细部优化减少岩石剥离量,2)实现协同开采过渡期产能稳定衔接。研究表明,该方法地下采用诱导冒落法开采挂帮矿,露天采用陡帮开采工艺开采坑底矿,按露天与地下开采工艺的优势对比优化露天延深开采的细部境界,本研究在一定程度上为过渡期矿山露天转地下开采提供了真实准确的技术支撑。
        At the end of the open-pit mining process in large metal mines,the mining model must change from open-pit mining to underground mining,but the mutual interference between the two mining models leads to poor production safety conditions and difficulties in production convergence during the transition period.To solve these technical problems of poor production safety conditions and difficulties in production convergence during the transition period,in this study,based on the case of the Dagu Mountain Mine,a new transition mode of wedge switching for collaborative mining is proposed and established,which is suitable for collaborative mining.This new mining process completely eliminates the boundary pillar and the artificial covering layer,combining the technology of the mining-induced caving method and the technology of deep mining at the bottom of the open-pit.The results show that 1) the optimization of the open-pit boundary reduces the amount of rock stripping,and 2) it achieves a stable transition of collaborative mining capacity.The study shows that the proposed method uses the technologies of the mining-induced caving method in underground mining and deep mining at the bottom of the open pit in open-pit mining,and the method then optimizes the open-pit mining in detail by comparing the advantages of open-pit mining and underground mining.This study provides true and accurate technical support for the transition from open-pit mining to underground mining.
引文
[1]BAKHTAVAR E,SHAHRIAR K,ORAEE K.Mining method selection and optimization of transition from open pit to underground in combined mining[J].Archives of Mining Sciences.2009,54:481-493.
    [2]HAN X M,LI Z J,GAN D Q.Numerical simulation and sensitivity analysis of slope stability in mine transferred from open pit to underground mining[J].Metal Mine,2007(6):8-12.(in Chinese)
    [3]SONG W D,WANG Z C,GONG D F.Numerical simulation on the slope stability when transferring open-pit mining to underground mining in Zimudang gold mine[J].Gold,2008,29:20-23.
    [4]SAFARI M,ATAEI M,KHALOKAKAIE R,KARAMOZIAN M.Mineral processing plant location using the analytic hierarchy process-A case study:The Sangan iron ore mine[J].Mining Science and Technology,2010,20:0691-0695.
    [5]SUN S G,GUO W C,LIU W B,GUO P,DONG Y F.Study on high slope sliding deformation mechanism induced by transiting from opencast into underground mining[J].Metal Mine,2015,15(5):162-165.(in Chinese)
    [6]WANG S Y,SLOAN S W,SHENG D C,TANG C A.Numerical analysis of the failure process around a circular opening in rock[J].Computers&Geotechnics,2012,39:8-16.
    [7]WANG S Y,LAM K C,AU S K,TANG C A,ZHU W C.Analytical and numerical study on the pillar rockbursts mechanism[J].Rock Mechanics&Rock Engineering,2006,39:445-467.
    [8]WANG S Y,SLOAN S W,HUANG M L,TANG C A.Numerical study of failure mechanism of serial and parallel rock pillars[J].Rock Mechanics&Rock Engineering,2011,44:179-198.
    [9]MA T H,TANG C A,YANG T H.Analysis on stability of top pillar when coming into underground mining from open-pit[J].Journal of Northeastern University(Natural Science),2006,27:450-453.
    [10]ZHAO X D,LI L C,TANG C A,ZHANG H X.Stability of boundary pillars in transition from open pit to underground mining[J].Journal of Central South University,2012,19:3256-3265.
    [11]RAO Z B,CAI S J.The blasting test and blasting vibration monitoring of vertical crater retreat mining method in the Luohe iron mine[J].Geotechnical and Geological Engineering,2015,34:1047-1056.
    [12]XU H L,YANG T H,ZHU L K.The studying on reasonable thickness of the boundary pillar during transferring open-pit into underground mining in III slope of Sijiaying mine[J].China Mining Magazine,2007,16:74-76.
    [13]HE P X,WU Z J.Order researching of transferred from opencast mining to underground mining in Guangxi Daxin Meng Kuang[J].China’s Manganese Industry,2008,26:35-38.
    [14]JASON PHILLIPS.The application of a mathematical model of sustainability to the results of a semi-quantitative environmental impact assessment of two iron ore opencast mines in Iran[J].Applied Mathematical Modelling,2013,37:7839-7854.
    [15]SAINSBURY D P,SAINSBURY B L,LORIG L J.Investigation of caving induced subsidence at the abandoned1824Grace Mine[J].Transactions of the Institution of Mining and Metallurgy,2013,119:151-161.
    [16]HAN F,XIE F,WANG J N.3-D numerical simulation on the stability of rocks in transferred underground mining from open-pit[J].Journal of University of Science and Technology Beijing,2006,28:509-514.
    [17]WANG Y F,CUI F.Study on stability and failure characteristics of the slope in transition from open-pit to underground mining by structural geology[J].Applied Mechanics and Materials,2012,170:932-936.
    [18]YAN S S.Study on feasibility of transfer from open-pit mining to underground mining in Washan pit of Nanshan mining Co[J].Metal Mine,2006,9:34-36.(in Chinese)
    [19]VYAZMENSKY A,STEAD D,ELMO D,MOSS A.Numerical analysis of block caving-induced instability in large open pit slopes:A finite element/discrete element approach[J].Rock Mech Rock Eng,2010,43(1):21-39.
    [20]HOU Jin-shan.Study on feasibility of underground mining turned to surface mining in Yuanjin mine[J].Coal Engineering,2013(3):17-19.(in Chinese)
    [21]BAKHTAVAR E,SHAHRIAR K,MIRHASANI A.Optimization of transition from open-pit to underground in combined mining using(0-1)integer programming[J].Journal of SAIMM,2012,112:1059-1064.
    [22]ZHANG L,WANG W P.Reviews on the developing status of combining mining with underground and open-pit[J].Metal Mine,2007,28(8):118-122.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700