根系水力再分配对陆地碳水循环的影响——以亚马孙流域为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of hydraulic redistribution on eco-hydrological cycles: A case study over the Amazon basin
  • 作者:王媛媛 ; 贾炳浩 ; 谢正辉
  • 英文作者:Wang Y Y;Jia B H;Xie Z H;
  • 关键词:陆面过程模式 ; CLM4.5 ; 水力再分配 ; 植被总初级生产力 ; 蒸散发
  • 中文刊名:JDXK
  • 英文刊名:Scientia Sinica(Terrae)
  • 机构:北京市气象台;中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室;
  • 出版日期:2019-02-20
  • 出版单位:中国科学:地球科学
  • 年:2019
  • 期:v.49
  • 基金:国家重点研发计划项目(编号:2016YFA0600203);; 中国科学院前沿科学重点项目(编号:QYZDY-SSW-DQC012);; 国家自然科学基金项目(批准号:41575096)资助
  • 语种:中文;
  • 页:JDXK201902009
  • 页数:12
  • CN:02
  • ISSN:11-5842/P
  • 分类号:108-119
摘要
水力再分配是指在根系-土壤界面水势梯度驱动下,水分经由根系在土壤不同部位之间的被动运输过程,是陆地表层系统地下生态过程的一个重要环节,它影响植被根系与土壤水分相互作用并在生态系统碳水循环过程中起着关键调节作用.利用模式探讨水力再分配对陆地碳水循环的影响,对定量评估水力再分配的作用及促进陆面模式的发展具有重要意义.文章将水力再分配方案应用于通用陆面过程模式CLM4.5,并以亚马孙流域为例进行数值模拟试验,探讨水力再分配对陆地碳水通量的影响.结果表明:在亚马孙塔帕若斯河国家森林(BRSa3)站点,由于湿润季的根区水分充足,根系水力再分配作用较小(小于0.1mm day~(–1));在干旱季水力再分配作用明显,土壤水由下层向上层传输的最大值可达0.3mm day~(–1),使得更多深层土壤水被根系吸收,从而减小干旱季土壤水分对植被的胁迫,改善模式对植被总初级生产力和蒸散发的低估,均方根误差分别减小了14.9g C m~(–2)month~(–1)和7.5mm month~(–1).文章表明,考虑水力再分配作用的陆面过程模式能够更好的再现植被对季节性干旱及严重干旱的响应.
        
引文
王媛媛,谢正辉,贾炳浩,于燕.2015.基于陆面过程模式CLM4的中国区域植被总初级生产力模拟与评估.气候与环境研究,20:97-110
    Armas C,Padilla F M,Pugnaire F I,Jackson R B.2010.Hydraulic lift and tolerance to salinity of semiarid species:Consequences for species interactions.Oecologia,162:11-21
    Avissar R,Silva Dias P L,Silva Dias M A F,Nobre C.2002.The largescale biosphere-atmosphere experiment in Amazonia(LBA):Insights and future research needs.J Geophys Res,107:8086
    Baker I T,Prihodko L,Denning A S,Goulden M,Miller S,Da Rocha HR.2008.Seasonal drought stress in the Amazon:Reconciling models and observations.J Geophys Res,113:G00B01
    Bauerle T L,Richards J H,Smart D R,Eissenstat D M.2007.Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil.Plant Cell Environ,31:177-186
    Bonan G B,Levis S,Kergoat L,Oleson K W.2002.Landscapes as patches of plant functional types:An integrating concept for climate and ecosystem models.Glob Biogeochem Cycle,16:5-1-5-23
    Brooks J R,Meinzer F C,Coulombe R,Gregg J.2002.Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests.Tree Physiol,22:1107-1117
    Burgess S S O,Adams M A,Turner N C,Ong C K.1998.The redistribution of soil water by tree root systems.Oecologia,115:306-311
    Chen J L,Wilson C R,Tapley B D,Yang Z L,Niu G Y.2009.2005drought event in the Amazon River basin as measured by GRACEand estimated by climate models.J Geophys Res,114:B05404
    Domec J C,Warren J M,Meinzer F C,Brooks J R,Coulombe R.2004.Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine:Mitigation by hydraulic redistribution.Oecologia,141:7-16
    Emerman S H,Dawson T E.1996.Hydraulic lift and its influence on the water content of the rhizosphere:An example from sugar maple,Acer saccharum.Oecologia,108:273-278
    Fisher R A,Muszala S,Verteinstein M,Lawrence P,Xu C,McDowell N G,Knox R G,Koven C,Holm J,Rogers B M,Spessa A,Lawrence D,Bonan G.2015.Taking off the training wheels:The properties of a dynamic vegetation model without climate envelopes,CLM4.5(ED).Geosci Model Dev,8:3593-3619
    Hao G Y,Jones T J,Luton C,Zhang Y J,Manzane E,Scholz F G,Bucci S J,Cao K F,Goldstein G.2009.Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients:Impacts on hydraulic architecture and gas exchange.Tree Physiol,29:697-705
    Hudiburg T W,Law B E,Thornton P E.2013.Evaluation and improvement of the Community Land Model(CLM4)in Oregon forests.Biogeosciences,10:453-470
    Hultine K R,Williams D G,Burgess S S O,Keefer T O.2003.Contrasting patterns of hydraulic redistribution in three desert phreatophytes.Oecologia,135:167-175
    Hultine K R,Scott R L,Cable W L,Goodrich D C,Williams D G.2004.Hydraulic redistribution by a dominant,warm-desert phreatophyte:Seasonal patterns and response to precipitation pulses.Funct Ecol,18:530-538
    Ishikawa C M,Bledsoe C S.2000.Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks:Evidence for hydraulic lift.Oecologia,125:459-465
    Jia B H,Xie Z H,Zeng Y J,Wang L Y,Wang Y Y,Xie J B,Xie Z P.2015.Diurnal and seasonal variations of CO2fluxes and their climate controlling factors for a subtropical forest in Ningxiang.Adv Atmos Sci,32:553-564
    Jia B H,Wang Y Y,Xie Z H.2018.Responses of the terrestrial carbon cycle to drought over China:Modeling sensitivities of the interactive nitrogen and dynamic vegetation.Ecol Model,368:52-68
    Jung M,Reichstein M,Bondeau A.2009.Towards global empirical upscaling of FLUXNET eddy covariance observations:Validation of a model tree ensemble approach using a biosphere model.Biogeosciences,6:2001-2013
    Jung M,Reichstein M,Ciais P,Seneviratne S I,Sheffield J,Goulden ML,Bonan G,Cescatti A,Chen J Q,de Jeu R,Dolman A J,Eugster W,Gerten D,Gianelle D,Gobron N,Heinke J,Kimball J,Law B E,Montagnani L,Mu Q Z,Mueller B,Oleson K,Papale D,Richardson A D,Roupsard O,Running S,Tomelleri E,Viovy N,Weber U,Williams C,Wood E,Zaehle S,Zhang K.2010.Recent decline in the global land evapotranspiration trend due to limited moisture supply.Nature,467:951-954
    Jung M,Reichstein M,Margolis H A,Cescatti A,Richardson A D,Arain M A,Arneth A,Bernhofer C,Bonal D,Chen J Q,Gianelle D,Gobron N,Kiely G,Kutsch W,Lasslop G,Law B E,Lindroth A,Merbold L,Montagnani L,Moors E J,Papale D,Sottocornola M,Vaccari F,Williams C.2011.Global patterns of land-atmosphere fluxes of carbon dioxide,latent heat,and sensible heat derived from eddy covariance,satellite,and meteorological observations.JGeophys Res,116:G00J07
    Kendra G C,Levis S,Thornton P.2012.Evaluation of the new CNDVoption of the community land model:Effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability.J Clim,25:3702-3714
    Lawrence P J,Chase T N.2007.Representing a new MODIS consistent land surface in the community land model(CLM 3.0).J Geophys Res,112:G01023
    Liu J G,Jia B H,Xie Z H,Shi C X.2016.Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multimodel approach.Adv Atmos Sci,33:673-684
    Nadezhdina N,Cermak J,Gasparek J,Nadezhdin V,Prax A.2006.Vertical and horizontal water redistribution in Norway spruce(Picea abies)roots in the Moravian Upland.Tree Physiol,26:1277-1288
    Natalia R C,Humberto R R,Lucy R H,Alessandro C A,Laura S B,Bradley C,Osvaldo M C,Plinio B C,Fernando L C,Antonio C C,David R F,Michael L G,Bart K,Jair M M,Yadvinder S M,Antonio O M,Scott D M,Antonio D N,Celso V R,Leonardo S,Ricardo KS,Julio T,Steven C W,Fabricio B Z,Scott R S.2013.What drives the seasonality of photosynthesis across the Amazon basin?A crosssite analysis of eddy flux tower measurements from the Brasil flux network.Agric For Meteorol,182-183:128-144
    Neumann R B,Cardon Z G.2012.The magnitude of hydraulic redistribution by plant roots:A review and synthesis of empirical and modeling studies.New Phytologist,194:337-352
    Oleson K W,Lawrence D M,Bonan G,Drewniak B,Huang M,Koven C D,Levis S,Li F,Riley W J,Subin Z M,Swenson S C,Thornton PE,Bozbiyik A,Fisher R,Kluzek E,Lamarque J E,Lawrence P J,Leung L R,Lipscomb W,Muszala S,Ricciuto D M,Sacks W,Sun Y,Tang J,Yang Z L.2013.Technical Description of Version 4.5 of the Community Land Model(CLM),NCAR Tech.Note,NCAR/TN-503+STR,National Center for Atmospheric Research,434
    Oliveira R S,Dawson T E,Burgess S S O.2005.Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil.J Trop Ecol,21:585-588
    Prieto I,Martínez-Tillería K,Martínez-Manchego L,Montecinos S,Pugnaire F I,Squeo F A.2010.Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems:Patterns and control mechanisms.Oecologia,163:855-865
    Raczka B,Duarte H F,Koven C D,Ricciuto D,Thornton P E,Lin J C,Bowling D R.2016.An observational constraint on stomatal function in forests:Evaluating coupled carbon and water vapor exchange with carbon isotopes in the community land model(CLM4.5).Biogeosciences,13:5183-5204
    Richards J H,Caldwell M M.1987.Hydraulic lift:Substantial nocturnal water transport between soil layers by Artemisia tridentata roots.Oecologia,73:486-489
    Ryel R J,Caldwell M M,Yoder C K,Or D,Leffler A.2002.Hydraulic redistribution in a stand of Artemisia tridentata:Evaluation of benefits to transpiration assessed with a simulation model.Oecologia,130:173-184
    Saleska S R,Didan K,Huete A R,da Rocha H R.2007.Amazon forests green-up during 2005 drought.Science,318:612-612
    Scholz F G,Bucci S J,Hoffmann W A,Meinzer F C,Goldstein G.2010.Hydraulic lift in a Neotropical savanna:Experimental manipulation and model simulations.Agric For Meteorol,150:629-639
    Schulze E D,Caldwell M M,Canadell J,Mooney H A,Jackson R B,Parson D,Scholes R,Sala O E,Trimborn P.1998.Downward flux of water through roots(i.e.inverse hydraulic lift)in dry Kalahari sands.Oecologia,115:460-462
    Scott R L,Cable W L,Hultine K R.2008.The ecohydrologic significance of hydraulic redistribution in a semiarid savanna.Water Resour Res,44:W02440
    Shi X Y,Mao J F,Thornton P E,Huang M.2013.Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model.Environ Res Lett,8:024012
    Smith D M,Jackson N A,Roberts J M,Ong C K.1999.Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta.Funct Ecol,13:256-264
    Viovy N.2011.CRUNCEP Dataset,description available at http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm,data available at http://dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2011/
    Wang G,Alo C,Mei R,Sun S.2011.Droughts,hydraulic redistribution,and their impact on vegetation composition in the Amazon forest.Plant Ecol,212:663-673
    Wang Y Y,Xie Z H,Jia B H,Yu Y.2015.Improving simulation of the terrestrial carbon cycle of China in version 4.5 of the Community Land Model using a revised Vcmax scheme.Atmos Oceanic Sci Lett,8:88-94
    Wang Y Y,Xie Z H,Jia B H.2016.Incorporation of a dynamic root distribution into CLM4.5:Evaluation of carbon and water fluxes over the Amazon.Adv Atmos Sci,33:1047-1060
    Warren J M,Meinzer F C,Brooks J R,Domec J C,Coulombe R.2007.Hydraulic redistribution of soil water in two old-growth coniferous forests:Quantifying patterns and controls.New Phytol,173:753-765
    Warren J M,Hanson P J,Iversen C M,Kumar J,Walker A P,Wullschleger S D.2015.Root structural and functional dynamics in terrestrial biosphere models-evaluation and recommendations.New Phytol,205:59-78
    Yan B Y,Dickinson R E.2014.Modeling hydraulic redistribution and ecosystem response to droughts over the Amazon basin using Community Land Model 4.0(CLM4).J Geophys Res-Biogeosci,119:2130-2143
    Zeng N,Yoon J H,Marengo J A,Subramaniam A,Nobre C A,Mariotti A,Neelin J D.2008.Causes and impacts of the 2005 Amazon drought.Environ Res Lett,3:014002
    Zeng X.2001.Global vegetation root distribution for land modeling.JHydrometeorol,2:525-530
    Zeng Y J,Xie Z H,Yu Y,Liu S,Wang L Y,Zou J,Qin P H,Jia B H.2016.Effects of anthropogenic water regulation and groundwater lateral flow on land processes.J Adv Model Earth Syst,8:1106-1131
    Zheng Z,Wang G.2007.Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia.JGeophys Res,112:G04012
    Zhu S G,Chen H S,Zhang X X,Wei N,Wei S G,Yuan H,Zhang S P,Wang L L,Zhou L H,Dai Y J.2017.Incorporating root hydraulic redistribution and compensatory water uptake in the common land model:Effects on site level and global land modeling.J Geophys Res-Atmos,122:7308-7322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700