长期低聚磷条件对AO-SBR系统Accumulibacter代谢特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Long-term Poly-P Deficiency on the Metabolic Properties of Accumulibacter in AO-SBR System
  • 作者:王少坡 ; 李柱 ; 赵乐丹 ; 于静洁 ; 赵明 ; 郑胜达 ; 孙力平
  • 英文作者:WANG Shao-po;LI Zhu;ZHAO Le-dan;YU Jing-jie;ZHAO Ming;ZHENG Sheng-da;SUN Li-ping;Tianjin Key Laboratory of Aquatic Science and Technology;School of Environmental and Municipal Engineering,Tianjin Chengjian University;School of Environment,Harbin Institute of Technology;Tianjin Sambo Water Technology Corporation Limited;
  • 关键词:Accumulibacter ; 聚磷代谢(PAM) ; 聚糖代谢(GAM) ; 荧光原位杂交(FISH) ; 代谢迁移
  • 英文关键词:Accumulibacter;;polyphosphate accumulating metabolism(PAM);;glycogen accumulating metabolism(GAM);;fluorescence in situ hybridization(FISH);;metabolic shift
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:天津市水质科学与技术重点实验室;天津城建大学环境与市政工程学院;哈尔滨工业大学环境学院;天津三博水科技有限公司;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51678388)
  • 语种:中文;
  • 页:HJKZ201905041
  • 页数:8
  • CN:05
  • ISSN:11-1895/X
  • 分类号:337-344
摘要
为了考察长期低聚磷(Poly-P)条件下Accumulibacter的菌群结构及其代谢特性的变化,采用两个SBR反应器,分别采用乙酸钠和丙酸钠为有机碳源,接种富含Accumulibacter的活性污泥,在进水PO34--P浓度为2. 5 mg·L~(-1)的低磷进水条件下运行60 d,对系统除磷性能、污泥浓度、主要菌群结构的变化进行研究.结果表明,长期低Poly-P条件下两个SBR系统均表现出良好的除磷和去除有机物的性能,但两个系统内的菌群代谢均表现出聚糖菌代谢特征;运行60 d后,丙酸盐系统中AccumulibacterⅠ型仍保持了较高的丰度(40%±7%),表明丙酸盐SBR系统中AccumulibacterⅠ型不仅具有较高的代谢活性,还能够在长期低聚磷条件下以一种不依赖Poly-P的代谢方式进行生存;对比发现,丙酸盐碳源更有利于Accumulibacter适应低磷负荷的运行环境,且在低磷负荷的运行环境下AccumulibacterⅠ型比Ⅱ型更具竞争优势.
        To investigate the changes in microbial community structure and metabolic properties of Accumulibacter under long-term Poly-P deficiency,an activated sludge enriched with Accumulibacter was inoculated into two SBR reactors,where sodium acetate and sodium propionate were used separately as organic carbon sources. The two reactors were operated for 60 days with an influent PO34--P concentration of 2. 5 mg·L~(-1). The phosphorus removal performance,sludge production,and changes in the microbial community structure of the systems were analyzed. The results indicated that both SBR systems showed good performance of phosphorus and organic matter removal. However,microorganisms in both systems showed glycogen-accumulating metabolism properties under longterm Poly-P deficiency. In the unfavorable environment of long-term Poly-P deficiency,Accumulibacter Ⅰ maintained a high abundance( 40% ± 7%) in the propionate SBR system,indicating that Accumulibacter Ⅰ had higher metabolic activity and its metabolic properties could be independent of Poly-P for survival under Poly-P deficiency for a long period. In comparison,propionate is more conducive to Accumulibacter adaptation to lower phosphorus loads,and Accumulibacter Ⅰ is more competitive than Accumulibacter Ⅱunder lower phosphorus loads.
引文
[1]Comeau Y,Hall K J,Hancock R E W,et al.Biochemical model for enhanced biological phosphorus removal[J].Water Research,1986,20(12):1511-1521.
    [2]Oehmen A,Yuan Z G,Blackall L L,et al.Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms[J].Biotechnology and Bioengineering,2005,91(2):162-168.
    [3]Acevedo B,Borrás,L,Oehmen A,et al.Modelling the metabolic shift of polyphosphate-accumulating organisms[J].Water Research,2014,65:235-244.
    [4]Smolders G J F,Van der Meij J,Van Loosdrecht M C M,et al.Model of the anaerobic metabolism of the biological phosphorus removal process:Stoichiometry and pH influence[J].Biotechnology and Bioengineering,1994,43(6):461-470.
    [5]Hesselmann R P X,von Rummell R,Resnick S M,et al.Anaerobic metabolism of bacteria performing enhanced biological phosphate removal[J].Water Research,2000,34(14):3487-3494.
    [6]Erdal U G,Erdal Z K,Daigger G T,et al.Is it PAO-GAOcompetition or metabolic shift in EBPR system?Evidence from an experimental study[J].Water Science&Technology,2008,58(6):1329-1334.
    [7]Acevedo B,Oehmen A,Carvalho G,et al.Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage[J].Water Research,2012,46(6):1889-1900.
    [8]Welles L,Lopez-Vazquez C M,Hooijmans C M,et al.Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms(PAO)and glycogen-accumulating organisms(GAO)[J].Applied Microbiology and Biotechnology,2014,98(17):7609-7622.
    [9]Crocetti G R,Hugenholtz P,Bond P L,et al.Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J].Applied and Environmental Microbiology,2000,66(3):1175-1182.
    [10]Kong Y H,Nielsen J L,Nielsen P H.Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants[J].Applied and Environmental Microbiology,2004,70(9):5383-5390.
    [11]He S,Gu A Z,Mc Mahon K D.The role of Rhodocyclus-like organisms in biological phosphorus removal:factors influencing population structure and activity[J].Proceedings of the Water Environment Federation,2005,2005(14):1999-2011.
    [12]Gonzalez-Gil G,Holliger C.Dynamics of microbial community structure of and enhanced biological phosphorus removal by aerobic granules cultivated on propionate or acetate[J].Applied and Environmental Microbiology,2011,77(22):8041-8051.
    [13]Crocetti G R,Banfield J F,Keller J,et al.Glycogenaccumulating organisms in laboratory-scale and full-scale wastewater treatment processes[J].Microbiology,2002,148(11):3353-3364.
    [14]Acevedo B,Murgui M,Borrás L,et al.New insights in the metabolic behaviour of PAO under negligible Poly-P reserves[J].Chemical Engineering Journal,2017,311:82-90.
    [15]Acevedo B,Cami1a C,Corona J E,et al.The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery[J].Chemical Engineering Journal,2015,270:459-467.
    [16]Welles L,Lopez-Vazquez C M,Hooijmans C M,et al.Prevalence of‘Candidatus Accumulibacter phosphatis’typeⅡunder phosphate limiting conditions[J].Amb Express,2016,6:44.
    [17]Zhou Y,Pijuan M,Zeng R J,et al.Could polyphosphateaccumulating organisms(PAOs)be glycogen-accumulating organisms(GAOs)?[J].Water Research,2008,42(10-11):2361-2368.
    [18]Welles L,Tian W D,Saad S,et al.Accumulibacter clades Type I andⅡperforming kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake[J].Water Research,2015,83:354-366.
    [19]李冬,曹美忠,郭跃洲,等.不同磷浓度下生物除磷颗粒系统的COD需求[J].环境科学,2018,39(7):3247-3253.Li D,Cao M Z,Guo Y Z,et al.COD requirement for biological phosphorus removal granule system under different phosphorus concentrations[J].Environmental Science,2018,39(7):3247-3253.
    [20]Liu W T,Nakamura K,Matsuo T,et al.Internal energy-based competition between polyphosphate-and glycogen-accumulating bacteria in biological phosphorus removal reactors-Effect of PCfeeding ratio[J].Water Research,2015,31(6):1430-1438.
    [21]Schuler A J,Jenkins D.Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents,Part I:experimental results and comparison with metabolic models[J].Water Environment Research,2003,75(6):485-498.
    [22]Tian W D,Lopez-Vazquez C M,Li W G,et al.Occurrence of PAOI in a low temperature EBPR system[J].Chemosphere,2013,92(10):1314-1320.
    [23]Welles L,Abbas B,Sorokin D Y,et al.Metabolic response of"Candidatus Accumulibacter Phosphatis"cladeⅡC to changes in influent P/C ratio[J].Frontiers in Microbiology,2016,7:2121.
    [24]Fang W,Zhang P Y,Gou X Y,et al.Volatile fatty acid production from spent mushroom compost:effect of total solid content[J].International Biodeterioration&Biodegradation,2016,113:217-221.
    [25]Oehmen A,Keller-Lehmann B,Zeng R J,et al.Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J].Journal of Chromatography A,2005,1070(1-2):131-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700