火星车行驶环境研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on Driving Environment of Mars Rover
  • 作者:赵静 ; 魏世民 ; 唐玲 ; 危清清
  • 英文作者:ZHAO Jing;WEI Shimin;TANG Ling;WEI Qingqing;Beijing Lab.For robot, Beijing University of Posts and Telecommunications;Beijing Institute of Spacecraft System Engineering;
  • 关键词:火星地形地貌 ; 火星车 ; 火星土壤力学特征 ; 火星环境模拟
  • 英文关键词:Mars topography;;Mars rover;;mechanical characteristics of martian soil;;simulation of the martian environment
  • 中文刊名:ZRHT
  • 英文刊名:Manned Spaceflight
  • 机构:北京邮电大学自动化学院机器人实验室;北京空间飞行器总体设计部;
  • 出版日期:2019-04-15
  • 出版单位:载人航天
  • 年:2019
  • 期:v.25;No.88
  • 语种:中文;
  • 页:ZRHT201902019
  • 页数:9
  • CN:02
  • ISSN:11-5008/V
  • 分类号:117-125
摘要
参考国内外火星环境的研究结果,总结了火星地形地貌基于陨石撞击以及火山喷发的特征以及形成原因;对火星车行驶性能影响较大的土壤、岩石等通过对比的方法进行力学特征及物理特性的分析;提出了模拟火星土壤、石块以及坡度等的重要参数以及模拟火星车行驶环境的可行性设计方案,可为我国火星车系统设计、火星探测器性能试验、火星环境模拟等提供技术依据与参考。
        On the basis of the research of Mars environment at home and abroad, the characteristics of Martian topography based on meteorite impact and volcanic eruption and their causes were summarized. The mechanical and physical properties of soil, rock, etc. which may have a great influence on the driving performance of the rover were analyzed. The important parameters for simulating the soil, stones and slope of the driving environment of the rover and the feasibility design scheme for simulating the driving environment of the rover were proposed. It can provide technical basis and reference for China's Rover system design, Mars detector performance test, Mars environment simulation and so on.
引文
[1] 林杨挺. 探索火星环境和生命[J]. 自然杂志, 2016, 38(1): 1-7.Lin Y. Exploration of paleoclimate and possible life on Mars[J]. Chinese Journal of Nature, 2016, 38(1): 1-7.(in Chinese)
    [2] 崔平远, 于正湜, 朱圣英. 火星进入段自主导航技术研究现状与展望[J]. 宇航学报, 2013, 34(4): 447-456.Cui P, Yu Z, Zhu S. Research progress and prospect of autonomous navigation techniques for Mars entry phase[J]. Journal of Astronautics, 2013, 34(4): 447-456.(in Chinese)
    [3] 孙广友. 火星探测器着陆区地貌环境特征初释[J]. 地球科学进展, 2005, 20(3): 366-370.Sun G. A preliminary exploration on the geomorphology environment of mars region landed by explores[J]. Advance in Earth Sciences, 2005, 20(3): 366-370.(in Chinese)
    [4] Di K C. A brief review of Spirit’s six years of Mars roving and scientific discoveries[J]. Journal of Remote Sensing, 2011, 15(4): 651-658.
    [5] 岳宗玉, 邸凯昌. 好奇心号巡视器及其特点分析[J]. 航天器工程, 2012, 21(5): 110-116.Yue Z, Di K. Mars Curiosity rover and its characteristics[J]. Spacecraft Engineering, 2012, 21(5): 110-116.(in Chinese)
    [6] 欧阳自远. 火星及其环境. 航天器环境工程[J]. 2012, 29(6): 591-601.Ouyang Z. The Mars and its environment[J]. Spacecraft Environment Engineering, 2012, 29(6): 591-601.(in Chinese)
    [7] Carr M H. The morphology of the Martian surface[J]. Space Science Reviews, 1980, 25: 231-284.
    [8] Deit L L, Mouelic S L, Bourgeois O, et al. Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: Identification and geological interpretation[J]. Journal of Geophysical Research, 2008, 113(E7): E07001.
    [9] 杨捷, 肖龙, 黄俊, 等. 基于THEMIS图像分析的火星Icaria Fossae地区古老火山地貌特征与形成时间[J]. 地质科技情报, 2010, 29(4): 51-55.Yang J, Xiao L, Huang J, et al. Timing and volcanic features of the Icaria Fossae region on Mars: them is image analysis[J]. Geological Science & Technology Information, 2010, 29(4): 51-55.(in Chinese)
    [10] Baloga S M, Mouginismark P J, Glaze L S, et al. Rheology of a long lava flow at Pavonis Mons, Mars[J]. Journal of Geophysical Research, 2003, 108(E7): 5066.
    [11] 于正湜, 朱圣英, 马冬梅, 等. 行星表面非规则陨石坑检测与识别方法[J]. 宇航学报, 2013, 34(3): 320-326.Yu Z, Zhu S, Ma D, et al. Detection and recognition method for irregular craters on planetary surface[J]. Journal of Astronautics, 2013, 34(34): 320-326.(in Chinese)
    [12] Cushing G E, Okubo C H, Titus T N. A typical pit craters on Mars: new insights from THEMIS, CTX, and HiRISE observations[J]. Journal of Geophysical Research Planets, 2015, 120(6): 1023-1043.
    [13] 芶盛, 岳宗玉, 邸凯昌, 等. 火星Evros Vallis与塔里木盆地开都河流域河网形态和水文特征比较[J]. 遥感学报, 2018, 11(2): 313-323.Gou S, Yue Z, Di K, et al. Quantitative comparison of morphometric and hydrological characteristics of valley networks between Evros Vallis on Mars and Kaidu River in Tarim Basin as terrestrial analog[J]. Journal of Remote Sensing, 2018, 11(2): 313-323.(in Chinese)
    [14] Kite E S, Howard A D, Lucas A, et al. Stratigraphy of Aeolis Dorsa, Mars: Stratigraphic context of the great river deposits[J]. Icarus, 2015, 253: 223-242.
    [15] 李继彦, 董治宝. 火星风沙地貌研究进展[J]. 中国沙漠, 2016, 36(4): 951-961.Li J, Dong Z. Research progress of aeolian landforms on Mars [J]. Journal of Desert Research, 2016, 36(4): 951-961.(in Chinese)
    [16] Ewing R C, Peyret A P B, Kocurek G, et al. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars[J]. Journal of Geophysical Research Planets, 2010, 115(E8): E08005.
    [17] Shaw A, Wolff M J, Seelos F P, et al. Surface scattering properties at the opportunity Mars rover’s traverse region measured by CRISM[J]. Journal of Geophysical Research: Planets, 2013, 118(8): 1699-1717.
    [18] Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical property experiments conducted by opportunity at Meridiani Planμm[J]. Science, 2004, 306(5702): 1730-1733.
    [19] Moore H J, Bickler D B, Crisp J A, et al. Soil-like deposits observed by Sojourner, the Pathfinder rover[J]. Journal of Geophysical Research: Planets, 1999, 104(E4): 8729-8746.
    [20] Peters G H, Abbey W, Bearman G H, et al. Mojave Mars simulant characterization of a new geologic Mars analog[J]. Icarus, 2008, 197(2): 470-479.
    [21] Seifertin K, Ehrenfreund P, Garry J, et al. Simulating Martian regolith in the laboratory[J]. Planetary and Space Science, 2008, 56(15): 2009-2025.
    [22] 党兆龙, 陈百超. 火星土壤物理力学特性分析[J]. 深空探测学报, 2016, 3(2): 129-133, 144.Dang Z, Chen B. Analysis on physical and mechanical properties of Martian soil[J].Journal of Deep Space Exploration, 2016, 3(2): 129-133, 144.(in Chinese)
    [23] 刘兴杰, 苏波, 江磊, 等. 火星表面土壤力学性能参数研究[J]. 载人航天, 2016, 22(4): 459-465.Liu X, Su B, Jiang L, et al. Research on soil mechanical properties of Martian surface soil[J]. Manned Spaceflight, 2016, 22(4): 459-465.(in Chinese)
    [24] 孙丽琳, 秦国泰, 朱光武. 火星尘埃与探测[J]. 北京航空航天大学学报, 2012, 38(1): 28-32.Sun L, Qin G, Zhu G. Characteristic and detection of Mars dust[J]. Journal of Beijing University of Aeronautics & Astronautics, 2012, 38(1): 28-32.(in Chinese)
    [25] Moroz V I, Gektin Y M, Naraeva M K, et al. Aerosol vertical Profile on Mars from the measurements of thermal radiation near the limb[J]. Planetary and Space Science, 1994, 42: 831-845.
    [26] Christensen P R, Anderson D L, Chase S C, et al. Results from the Mars global surveyor thermal emission spectrometer[J]. Science, 1998, 279: 1692-1698.
    [27] Smith M D, Pearl J C, Conrath B J, et al. Mars global surveyor thermal emission spectrometer(TES) observations of dust opacity during aero braking and science phasing[J]. Journal of Geophysical Research, 2000, 105: 9539-9552.
    [28] Calle I C. The electrostatic environments of Mars and the Moon[J]. Journal of Physics: Conference Series, 2011, 301: 012006.
    [29] Gunnlaugsson H P. Analysis of the magnetic properties Experiment data on Mars: results from Mars pathfinder[J]. Planetary and Space Science, 2000, 48: 1391-1404.
    [30] Hviid S F, Madsen M B, Gunnlaugsson H P, et al. Magnetic properties experiments on the Mars Pathfinder lander: preliminary results[J]. Science, 1997, 278(5344): 1768-1770.
    [31] Tomasko M G, Doose L R, Lemmon M, et al. Properties of dust In the Martian atmosphere from the imager on Mars Pathfinder[J]. Journal of Geophysical Research, 1999, 104: 8987-9007.
    [32] Moroz V I, Petrova E V, Ksanfomality L V, et al. Spectrophotometry of Mars in the KRFM experiment of the PHOBOS mission: some properties of the particles of atmospheric aerosols and the surface[J]. Planetary and Space Science, 1993, 41: 569-585.
    [33] Golombek M P, Arvidson R E, Heet T, et al. Size-frequency distributions of rocks on the northern plains of Mars in HiRISE images with special reference to phoenix landing sites[C]//Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, 2007: 1405.
    [34] Drosssart P, Rosenqvist J, Combes M, et al. Martian aerosol properties from the Phobos/ISM experiment [J]. Annales Geophysicae, 1991, 9: 754-760.
    [35] 李建桥, 薛龙, 邹猛, 等. 已有模拟火星壤力学性质分析及新火星壤研制[J]. 吉林大学学报(工), 2016, 46(1): 172-178.Li J, Xue L, Zou M, et al. Terra-mechanics characters and development of Martian simulant regolith[J]. Terra-mechanics Characters and Development of Martian Simulant Regolith, 2016, 46(1): 172-178.(in Chinese)
    [36] Golombek M P, Haldemann A F, Forsbergtaylor N K, et al. Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations[J]. Journal of Geophysical Research, 2003, 108(E12): 8086.
    [37] Golombek M P, Arvidson R E, Heet T, et al. Size-frequency distributions of rocks on the northern plains of Mars in HiRISE images with special reference to Phoenix landing sites[C]//Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, 2007: 1405.
    [38] Heverly M, Matthews J, Lin J, et al. Traverse performance characterization for the Mars Science Laboratory rover[J]. Journal of Field Robotics, 2013, 30(6): 835-846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700