纳米缺钙羟基磷灰石/壳聚糖复合微球的原位均匀制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In-situ uniform generation of nano calcium-deficient hydroxyapatite/chitosan composite microspheres
  • 作者:郭圆圆 ; 季金苟 ; 田浈桢 ; 朱琴 ; 王丹 ; 郝石磊
  • 英文作者:GUO Yuanyuan;JI Jingou;TIAN Zhenzhen;ZHU Qin;WANG Dan;HAO Shilei;Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering,Chongqing University;College of Bioengineering,Chongqing University;
  • 关键词:纳米缺钙羟基磷灰石 ; 壳聚糖 ; 均匀沉淀 ; 原位制备 ; 生物学性能
  • 英文关键词:nano calcium-deficient hydroxyapatite;;chitosan;;homogeneous precipitation;;in situ;;biological properties
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:重庆大学化学化工学院制药工程系;重庆大学生物工程学院;
  • 出版日期:2019-07-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.430
  • 基金:中央高校基本科研业务费资助项目(106112018CDQYSG0007)
  • 语种:中文;
  • 页:GNCL201907039
  • 页数:5
  • CN:07
  • ISSN:50-1099/TH
  • 分类号:222-226
摘要
针对纳米缺钙羟基磷灰石/壳聚糖(nCDHA/CS)复合微球中,nCDHA在微球中分布不均和含量不足的问题,在油包水(W/O)体系中,运用均匀沉淀法原位制备了nCDHA/CS复合微球。利用扫描电镜(SEM)、粒度分析仪、X射线衍射(XRD)、傅里叶红外光谱仪(FT-IR)、热重分析(TG)、X射线光电子能谱仪(XPS)等对复合微球的理化性能进行了表征。结果显示,所制得的nCDHA/CS复合微球中,nCDHA均匀分布于复合微球中,其含量高达43%;复合微球粒径分布较窄,球形度良好,分散性指数(PDI)为0.291,平均粒径18.6μm。仿生矿化结果显示,复合微球表面矿化是从nCDHA生成nHA的过程,仿生矿化14 d后,微球表面形成大量均匀的片状类骨磷灰石,表明该复合微球具有较好的生物学性能,对骨组织再生修复具有较大的潜力。
        Aimed at the problem of nano calcium-deficient hydroxyapatite(nCDHA) uneven distribution and insufficient content in nano calcium-deficient hydroxyapatite/chitosan(CS) composite microspheres, nCDHA/CS composite microspheres were firstly fabricated in situ by homogeneous precipitation method in a water-in-oil(W/O) emulsion. The physicochemical properties of composite microspheres were investigated by scanning electronic microscopy(SEM), laser particle size analyzer, X-ray diffraction(XRD), Fourier infrared spectrum(FT-IR), thermogravimetric analysis(TG) and X-ray photoelectron spectroscopy(XPS). The results indicate that the nCDHA was uniformly distributed in the nCDHA/CS composite microspheres, and the content was up to 43%. Moreover, the composite microspheres had a narrow size distribution, good sphericity with PDI 0.291 and average size of 18.6 μm. The result of biomimetic mineralization shows that the surface mineralization of composite microspheres was a process from nCDHA to nHA. After 14 d of biomimetic mineralizationr, a large number of even sheets of bone-like apatite were formed on the surface of the microspheres, indicating that the composite microspheres had good biological properties and great potential for bone tissue regeneration and repair.
引文
[1] Chao S C,Wang M J,Pai N S,et al.Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair[J].Materials Science and Engineering:C,2015,57:113-122.
    [2] Lei Y,Guan J J,Chen W,et al.Fabrication of hydroxyapatite/chitosan porous materials for Pb (II) removal from aqueous solution[J].Rsc Advances,2015,5(32):25462-25470.
    [3] Winand L,Dallemagne M J.Hydrogen bonding in the calcium phosphates[J].Nature,1962,193(4813):368-369.
    [4] Guo H,Su J,Wei J,et al.Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering [J].Acta Biomaterialia,2009,5(1):268-278.
    [5] Hu X X,Shen H,Yang F,et al.Modified composite microspheres of hydroxyapatite and poly (lactide-co-glycolide) as an injectable scaffold[J].Applied Surface Science,2014,292:764-772.
    [6] Lee J U,Kim G H.Calcium-deficient hydroxyapatite/collagen/platelet-rich plasma scaffold with controlled release function for hard tissue regeneration [J].ACS Biomaterials Science & Engineering,2018,4(1):278-289.
    [7] Zhao J,Wang S Y,Bao J Q,et al.Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo[J].PLoS One,2013,8(1):e54645.
    [8] Liu T Y,Chen S Y,Li J H,et al.Study on drug release behaviour of CDHA/chitosan nanocomposites—effect of CDHA nanoparticles[J].Journal of controlled release,2006,112(1):88-95.
    [9] Lim H N,Huang N M,Loo C H.Facile preparation of graphene-based chitosan films:Enhanced thermal,mechanical and antibacterial properties[J].Journal of Non-crystalline Solids,2012,358(3):525-530.
    [10] Buschmann M D,Merzouki A,Lavertu M,et al.Chitosans for delivery of nucleic acids[J].Advanced Drug Delivery Reviews,2013,65(9):1234-1270.
    [11] Shavandi A,Bekhit A E D A,Sun Z,et al.A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering[J].Materials Science and Engineering:C,2015,55:373-383.
    [12] Paul W,Sharma C P.Development of porous spherical hydroxyapatite granules:application towards protein delivery[J].Journal of Materials Science:Materials in Medicine,1999,10(7):383-388.
    [13] Lee J,Yun H S.Hydroxyapatite-containing gelatin/chitosan microspheres for controlled release of lysozyme and enhanced cytocompatibility[J].Journal of Materials Chemistry B,2014,2(9):1255-1263.
    [14] Cai B,Zou Q,Zuo Y,et al.Fabrication and cell viability of injectable n-HA/chitosan composite microspheres for bone tissue engineering[J].Rsc Advances,2016,6(89):85735-85744.
    [15] Ding C C,Teng S H,Pan H.In-situ generation of chitosan/hydroxyapatite composite microspheres for biomedical application[J].Materials Letters,2012,79:72-74.
    [16] Li Jian,Han Zhijun,Wei Yan,et al.In situ biomimetic fabrication and characterization of nano-hydroxyapatite/chitosan composite microspheres[J].Journal of Inorganic Materials,2014,29(12):1327-1332(in Chinese).李健,韩志军,魏延,等.纳米羟基磷灰石/壳聚糖复合微球的原位仿生制备及表征[J].无机材料学报,2014,29(12):1327-1332.
    [17] Kokubo T,Takadama H.How useful is SBF in predicting in vivo bone bioactivity[J].Biomaterials,2006,27(15):2907-2915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700