太湖近岸带草藻残体分解对水质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of decomposition processes of higher aquatic plants and algae on water quality near the shoreline of Lake Taihu
  • 作者:余岑涔 ; 马杰 ; 许晓光 ; 王国祥 ; 刘慧超
  • 英文作者:YU Cen-cen;MA Jie;XU Xiao-guang;WANG Guo-xiang;LIU Hui-chao;School of Environment, Nanjing Normal University;School of Geography Science, Nanjing Normal University;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Institute of Water Environmental Eco-remediation;
  • 关键词:水生植物 ; 蓝藻 ; 分解 ; 水质 ; 太湖
  • 英文关键词:aquatic plants;;cyanobacteria;;decomposition;;water quality;;Lake Taihu
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:南京师范大学环境学院;南京师范大学地理科学学院;江苏省地理信息资源开发与利用协同创新中心江苏省环境演变与生态建设重点实验室江苏省水土环境生态修复工程实验室;
  • 出版日期:2018-02-20
  • 出版单位:农业环境科学学报
  • 年:2018
  • 期:v.37;No.270
  • 基金:国家自然科学基金项目(41573061);; 国家水体污染控制与治理科技重大专项(2012zx07101-008-02);; 江苏省太湖水环境综合治理科研项目(JSZC-G2014-212);; 江苏省研究生科研与实践创新计划项目(KYCX17_1064)~~
  • 语种:中文;
  • 页:NHBH201802012
  • 页数:7
  • CN:02
  • ISSN:12-1347/S
  • 分类号:104-110
摘要
为探究蓝藻(Cyanobacteria)、芦苇(Phragmites australis)残体及其混合分解过程对水质的影响,在实验室进行了模拟实验,共设置B、C、D三个处理组,分别加入2 g蓝藻、2 g芦苇及蓝藻、芦苇各2 g,监测其分解过程中水体溶解氧(DO)、氧化还原电位(Eh)、总氮(TN)和总磷(TP)等理化指标变化情况。结果表明:加入草藻残体后,水体DO和Eh迅速下降。蓝藻-芦苇混合分解组一直处于厌氧状态,水体Eh值最终稳定在-150 m V左右,水体具极强还原性;同时,厌氧强还原条件又加速了草藻残体分解过程,促进了营养盐向上覆水的释放,B、C、D组TN含量分别于实验第2 d、第7 d和第2 d达到峰值,是初始值的5倍、2倍和6倍,水体无机氮以NH+4-N为主;厌氧环境下,间隙水中磷酸盐向上覆水迁移转化以及沉积物中Fe-P的还原释放,使水体TP和Fe2+浓度升高,TP平均增长速率分别为0.38、0.10、0.52 mg·L~(-1)·d~(-1),Fe2+最高浓度达到1.62 mg·L~(-1)。研究表明,蓝藻和芦苇在分解过程中会向水体中释放大量营养盐,引发"湖泛"或"黑水团"现象,加剧水体富营养化。因此,应当密切关注芦苇丛及近岸带漕沟等区域,避免引发水质快速恶化等问题。
        Cyanobacteria and Phragmites australis from Lake Taihu were collected to simulate the influence of decomposition processes of higher aquatic plants and algae on water quality in the laboratory. Cyanobacteria, Phragmites australis, and cyanobacteria and Phragmites australis samples of 2 g each were arranged into groups B, C, and D, respectively, for three treatments to continuously monitor the concentra-tion variations of total nitrogen(TN), total phosphorus(TP)and other physico-chemical parameters of water. Results showed that DO and Eh rapidly decreased after adding cyanobacteria and aquatic plants. The mixed decomposition group remained anaerobic throughout the experiment, and Eh values of the water body were finally stabilized at about-150 m V, suggesting that the water was in a strongly reducing state. Simultaneously, the strong anaerobic and reducing environments accelerated the decomposition of cyanobacteria and Phragmites australis, and promoted the release of nutrients to the overlying water. The TN contents of B, C, and D groups peaked on the 2 nd, 7 th, and 2 nd days, and their maximum concentrations were 5, 2 times, and 6 times that of the control, respectively. Inorganic nitrogen was dominated by NH+4-N. Under anaerobic conditions, the migration and transformation of phosphate from the interstitial water to the overlying water and the reduction of Fe-P in the sediments increased the concentrations of TP and Fe2+in the water. The average increasing rates of TP were 0.38,0.10 mg·L~(-1)·d~(-1), and 0.52 mg·L~(-1)·d~(-1), and the highest concentration of Fe2 +was 1.62 mg·L~(-1). These observations clarified that a large amount of nutrients was released during the decomposition processes of higher aquatic plants and algae, which intensified eutrophication.Therefore, it is necessary to pay close attention to reeds and the shoreline of eutrophic lakes to avoid rapid deterioration of water quality.
引文
[1]Zhang X J,Chen C,Ding J Q,et al.The 2007 water crisis in Wuxi,China:Analysis of the origin[J].Journal of Hazardous Materials,2010,182(1/2/3):130-135.
    [2]Deng D G,Xie P,Zhou Q,et al.Studies on temporal and spatial variations of phytoplankton in Lake Chaohu[J].Journal of Integrative Plant Biology,2007,49(4):409-418.
    [3]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.QIN Bo-qiang.Occurrence mechanism and control approach of eutrophication in shallow lakes of the middle and lower reaches of the Yangtze River[J].Journal of Lake Sciences,2002,14(3):193-202.
    [4]杨文斌,王国祥,王刚.菹草衰亡腐烂对水质持续性影响试验研究[J].安全与环境学报,2010,10(2):90-92.YANG Wen-bin,WANG Guo-xiang,WANG Gang.Potamogetoncrispus experimental study of influence of decay on the decline of su stainable water quality[J].Journal of Safety and Environment,2010,10(2):90-92.
    [5]朱梦圆,朱广伟,王永平.太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J].环境科学,2011,32(2):409-415.ZHU Meng-yuan,ZHU Guang-wei,WANG Yong-ping.Influence of scum of algal bloom on the release of N and P from sediments of Lake Taihu[J].Environmental Science,2011,32(2):409-415.
    [6]Juliettel S,Gregl B,Paulv Z.A review of cyanobacterial odorous and bioactive metabolites:Impacts and management alternatives in aquaculture[J].Aquaculture,2008,280(1/2/3/4):5-20.
    [7]强蓉蓉,王国祥,张利民,等.凤眼莲死亡对湖泊水质的持续性影响分析[J].中国环境监测,2005,21(1):24-27.QIANG Rong-rong,WANG Guo-xiang,ZHANG Li-min,et al.The continuous effects of decaying Eichhornia crassipes on water quality[J].Environmental Monitoring in China,2005,21(1):24-27.
    [8]Feng Z Y,Fan C X,Huang W Y,et al.Microorganisms and typical organic matter responsible for lacustrine"black bloom"[J].Science of the Total Environment,2014,470/471:1-8.
    [9]刘国锋,何俊,范成新,等.藻源性黑水团环境效应:对水-沉积物界面处Fe、Mn、S循环影响[J].环境科学,2010,31(11):2652-2660.LIU Guo-feng,HE Jun,FAN Cheng-xin,et al.Environment effects of algae-caused black spots:Impacts on Fe-Mn-S cycles in water-sediment interface[J].Environmental Science,2010,31(11):2652-2660.
    [10]申秋实,邵世光,王兆德,等.风浪条件下太湖藻源性“湖泛”的消退及其水体恢复进程[J].科学通报,2012,57(12):1060-1066.SHEN Qiu-shi,SHAO Shi-guang,WANG Zhao-de,et al.Fade and recovery process of algae-induced black bloom in Lake Taihu under different wind conditions[J].Chinese Science Bulletin,2012,57(12):1060-1066.
    [11]刘国锋,钟继承,何俊,等.太湖竺山湾藻华黑水团区沉积物中Fe、S、P的含量及其形态变化[J].环境科学,2009,30(9):2520-2526.LIU Guo-feng,ZHONG Ji-cheng,HE Jun,et al.Effects of black spots of dead-cyanobacterial mats on Fe-S-P cycling in sediments of Zhushan Bay,Lake Taihu[J].Environmental Science,2009,30(9):2520-2526.
    [12]Rozan T F,Taillefert M,Trouwborst R E,et al.Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay:Implications for sediment nutrient release and benthic macroalgal blooms[J].Limnology&Oceanography,2002,47(5):1346-1354.
    [13]孔明,张路,尹洪斌,等.蓝藻暴发对巢湖表层沉积物氮磷及形态分布的影响[J].中国环境科学,2014,34(5):1285-1292.KONG Ming,ZHANG Lu,YIN Hong-bin,et al.Influence of algae bloom on distribution of total and speciation of nitrogen and phosphorus in the surface sediments from Lake Chaohu[J].China Environmental Science,2014,34(5):1285-1292.
    [14]尚丽霞,柯凡,李文朝,等.高密度蓝藻厌氧分解过程与污染物释放实验研究[J].湖泊科学,2013,25(1):47-54.SHANG Li-xia,KE Fan,LI Wen-zhao,et al.Laboratory research on the contaminants release during the anaerobic decomposition of highdensity cyanobacteria[J].Journal of Lake Sciences,2013,25(1):47-54.
    [15]李柯,关保华,刘正文.蓝藻碎屑分解速率及氮磷释放形态的实验分析[J].湖泊科学,2011,23(6):919-925.LI Ke,GUAN Bao-hua,LIU Zheng-wen.Experiments on decomposition rate and release forms of nitrogen and phosphorus from the decomposing cyanobacterial detritus[J].Journal of Lake Sciences,2011,23(6):919-925.
    [16]戚美侠,王红萍,陈杰.冬、春季芦苇(Phragmites australis)和狭叶香蒲(Typha angustifolia)的腐解过程及其对水质的影响[J].湖泊科学,2017,29(2):420-429.QI Mei-xia,WANG Hong-ping,CHEN Jie.Decomposition of Phragmites australis and Typha angustifolia and their effects on the water quality in winter and spring[J].Journal of Lake Sciences,2017,29(2):420-429.
    [17]叶春,王博,李春华,等.沉水植物黑藻腐解过程中营养盐释放过程[J].中国环境科学,2014,34(10):2653-2659.YE Chun,WANG Bo,LI Chun-hua,et al.Nutrient release process during decomposition of submerged macrophytes(Hydrilla verticillata Royle)[J].China Environmental Science,2014,34(10):2653-2659.
    [18]潘慧云,徐小花,高士祥.沉水植物衰亡过程中营养盐的释放过程及规律[J].环境科学研究,2008,21(1):64-68.PAN Hui-yun,XU Xiao-hua,GAO Shi-xiang.Study on process of nutrition release during the decay of submerged macrophytes[J].Research of Environmental Sciences,2008,21(1):64-68.
    [19]王国祥,马向东,常青.洪泽湖湿地:江苏泗洪洪泽湖湿地国家级自然保护区科学考察报告[M].北京:科学出版社,2014:144-147.WANG Guo-xiang,MA Xiang-dong,CHANG Qing.Hongze Lake Wetland:Scientific investigation report of National Nature Reserve of Hongze Lake Wetland in Sihong,Jiangsu[M].Beijing:Science Press,2014:144-147.
    [20]谷孝鸿,张圣照,白秀玲,等.东太湖水生植物群落结构的演变及其沼泽化[J].生态学报,2005,25(7):1541-1548.GU Xiao-hong,ZHANG Sheng-zhao,BAI Xiu-ling,et al.Evolution of community structure of aquatic macrophytes in East Taihu Lake and its wetlands[J].Acta Ecologica Sinica,2005,25(7):1541-1548.
    [21]张圣照,千金良.东太湖水生植被及其沼泽化趋势[J].植物资源与环境学报,1999,8(2):1-6.ZHANG Sheng-zhao,QIAN Jin-liang.Succession of hydrophytic vegetation and swampy tendency in the East Taihu Lake[J].Journal of Plant Resources and Environment,1999,8(2):1-6.
    [22]曹勋.草藻残体分解过程及其对水质的影响[D].南京:南京师范大学,2015.CAO Xun.The decomposition processes of higher aquatic plants and algae on the water quality[D].Nanjing:Nanjing Normal University,2015.
    [23]Shilla D,Asaeda T,Fujino T,et al.Decomposition of dominant submerged macrophytes:Implications for nutrient release in Myall Lake,NSW,Australia[J].Wetlands Ecology and Management,2006,14(5):427-433.
    [24]陈国元,赵超.不同浓度NH3对富营养化湖泊水体硝化作用的影响[J].水生态学杂志,2011,32(6):52-56.CHEN Guo-yuan,ZHAO Chao.Effects of different concentrations of NH3on nitrification in eutrophic lakes[J].Journal of Hydroecology,2011,32(6):52-56.
    [25]韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101.HAN Sha-sha,WEN Yan-mao.Phosphorus release from sediments of eutrophic water and its influencing factors[J].Chinese Journal of Ecology,2004,23(2):98-101.
    [26]张智,刘亚丽,段秀举.湖泊底泥磷释放影响因素显著性试验分析[J].植物资源与环境学报,2006,15(2):16-19.ZHANG Zhi,LIU Ya-li,DUAN Xiu-ju.Research on remarkable affecting factors of phosphorus releasing from sediment in Shuanglong Lake[J].Journal of Plant Resources and Environment,2006,15(2):16-19.
    [27]Royer T V,Monaghan M T,Minshall G W.Processing of native and exotic leaf litter in two Idaho(U.S.A.)streams[J].Hydrobiologia,1999,400:123-128.
    [28]俞振飞.沉水植物衰亡对上覆水和沉积物之间磷含量再分配的影响[D].南京:南京师范大学,2012.YU Zhen-fei.The effect of submerged macrophyte on phosphorus reallocation between water and sediment in the decomposition period[D].Nanjing:Nanjing Normal University,2012.
    [29]孙慧卿,王平,江和龙.不同模拟条件下太湖沉积物-水界面磷行为的研究[J].环境科学与技术,2012,35(5):141-146.SUN Hui-qing,WANG Ping,JIANG He-long.Behavior of phosphorus in interface of sediment-overlying water in Taihu Lake under different simulative conditions[J].Environmental Science&Technology,2012,35(5):141-146.
    [30]李真,黄民生,何岩,等.铁和硫的形态转化与水体黑臭的关系[J].环境科学与技术,2010,33(增刊):1-3,7.LI Zhen,HUANG Min-sheng,HE Yan,et al.The relationship between the form transformation of iron and sulfur and the black-odor water body[J].Environmental Science&Technology,2010,33(Suppl):1-3,7.
    [31]Downes M T.Aquatic nitrogen transformations at low oxygen concentrations[J].Applied&Environmental Microbiology,1988,54(1):172-175.
    [32]Reddy K R,Sacco P D.Decomposition of water hyacinth in agricultural drainage water[J].Journal of Environmental Quality,1981,10(2):228-234.
    [33]Smith R.Limnology:Inland water ecosystems[J].Freshwater Science,2002,21(2):346-347.
    [34]Ghyoot W,Vandaele S,Verstraete W.Nitrogen removal from sludge reject water with a membrane-assisted bioreactor[J].Water Research,1999,33(1):23-32.
    [35]曾巾,杨柳燕,肖琳,等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学,2007,19(4):382-389.ZENG Jin,YANG Liu-yan,XIAO Lin,et al.Biogeochemical cycling of nitrogen in lakes and the role of microorganisms in conversion of nitrogen compounds[J].Journal of Lake Sciences,2007,19(4):382-389.
    [36]马培,李新艳,王华新,等.河流反硝化过程及其在河流氮循环与氮去除中的作用[J].农业环境科学学报,2014,33(4):623-633.MA Pei,LI Xin-yan,WANG Hua-xin,et al.Denitrification and its role in cycling and removal of nitrogen in river[J].Journal of Agro-Environment Science,2014,33(4):623-633.
    [37]刘波,王文林,凌芬,等.曝气充氧条件下污染河道氨挥发特性模拟[J].生态学报,2012,32(23):7270-7279.LIU Bo,WANG Wen-lin,LING Fen,et al.Characterization of ammonia volatilization from polluted river under aeration conditons:A simulation study[J].Acta Ecologica Sinica,2012,32(23):7270-7279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700