富营养化湖泊夏季表层水体温室气体浓度及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Concentration of dissolved greenhouse gas and its influence factors in the summer surface water of eutrophic lake
  • 作者:闫兴成 ; 张重乾 ; 季铭 ; 王明玥 ; 冉珊珊 ; 许晓光 ; 王国祥
  • 英文作者:YAN Xingcheng;ZHANG Zhongqian;JI Ming;WANG Mingyue;RAN Shanshan;XU Xiaoguang;WANG Guoxiang;School of Environment,Nanjing Normal University;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Jiangsu Key Laboratory of Environmental Change and Ecological Construction,Jiangsu Engineering Laboratory of Water and Soil Eco-remediation;
  • 关键词:太湖 ; 蓝藻暴发 ; 表层水体 ; 温室气体 ; 影响因素
  • 英文关键词:Lake Taihu;;cyanobacteria blooms;;surface water;;greenhouse gas;;influence factors
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:南京师范大学环境学院;江苏省地理信息资源开发与利用协同创新中心江苏省环境演变与生态建设重点实验室江苏省水土环境生态修复工程实验室;
  • 出版日期:2018-09-06
  • 出版单位:湖泊科学
  • 年:2018
  • 期:v.30
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07203-003);; 江苏省太湖水环境综合治理科研项目(JSZC-G2014-212);江苏省太湖水环境综合治理科研项目(TH2015202);; 国家自然科学基金项目(41573061);国家自然科学基金项目(41573105);; 江苏省高等学校自然科学研究面上项目(17KJB170009)联合资助
  • 语种:中文;
  • 页:FLKX201805023
  • 页数:9
  • CN:05
  • ISSN:32-1331/P
  • 分类号:246-254
摘要
为研究富营养化湖泊水体温室气体浓度及其影响因素,以太湖西岸和竺山湾为例,共调查研究了27个点位,采用顶空平衡法对其表层水体中溶解的甲烷(CH_4)和氧化亚氮(N_2O)浓度进行测定.结果表明,太湖近岸带蓝藻水华堆积区表层水体中CH_4和N_2O两种温室气体浓度远远高于开阔湖区点位,CH_4和N_2O最高浓度分别为3.79±0.095和0.078±0.003μmol/L.蓝藻水华堆积区和开阔湖区CH_4平均浓度分别为2.33±1.46和0.14±0.059μmol/L,N_2O的平均浓度分别为0.054±0.024和0.023±0.012μmol/L.两种气体在水中均呈现过饱和状态,其中蓝藻水华堆积区表层水体中CH_4和N_2O饱和度远远高于开阔湖区点位.此外,入湖河流河口区域表层水体溶解性N_2O浓度较高.将水中CH_4和N_2O浓度与水体环境因子之间进行相关性分析,表明水体总氮、总磷、铵态氮和溶解性有机碳浓度与CH_4和N_2O浓度呈显著正相关,CH_4浓度与硝态氮浓度呈显著负相关.研究结果揭示了太湖蓝藻水华堆积区是CH_4和N_2O两种温室气体重要的潜在排放源,蓝藻水华暴发对湖泊温室气体的排放具有重要影响,但该过程的驱动机制及影响因素仍需要进一步研究.
        In order to study the concentration of dissolved greenhouse gas and its influence factors in the surface water of eutrophic lake,the west shore and Zhushan Bay of Lake Taihu were taken as an example. The concentrations of dissolved CH_4 and N_2O in the surface water of 27 sites were determined by using headspace equilibrium method. Results indicated that concentrations of dissolved CH_4 and N_2O in the cyanobacteria blooms accumulated zone were much higher than those from the open lake area,with the highest value of 3.79±0.095 and 0.078±0.003 μmol/L,respectively. The average concentrations of dissolved CH_4 in the cyanobacteria blooms accumulated zone and open lake area were 2.33±1.46 and 0.14±0.059 μmol/L,and N_2O concentration were 0.054±0.024 and 0.023±0.012 μmol/L,respectively. The two greenhouse gases were all over saturated in the study sites,and the saturability of the greenhouse gases in the cyanobacteria blooms accumulated zone was much higher than that from the open lake. Additionally,concentrations of N_2O in the estuaries of inflowrivers were higher than other sites. The results of correlation analysis indicated that the concentrations of dissolved CH_4 and N_2O were significantly and positively correlated with total nitrogen,total phos-phorus,ammonium nitrogen and dissolved organic carbon,while the concentrations of the dissolved CH_4 was significantly and negatively correlated with nitrate nitrogen. This study indicated that the littoral zone,especially the cyanobacteria blooms accumulated zone plays a potential role in greenhouse gas emission from water to the atmosphere. Moreover,the occurrence of cyanobacteria blooms may facilitated the production of CH_4 and N_2O,but the driving mechanism and influence factors during this process need further investigations.
引文
[1]Bastviken D,Tranvik LJ,Downing JA et al.Freshwater methane emissions offset the continental carbon sink.Science,2011,331(6013):50-50.DOI:10.1126/science.1196808.
    [2]Cole JJ,Prairie YT,Caraco NF et al.Plumbing the global carbon cycle:integrating inland waters into the terrestrial carbon budget.Ecosystems,2007,10(1):172-185.DOI:10.1007/s10021-006-9013-8.
    [3]Wu QL,Xing P,Li HB et al.Impacts of regime shift between phytoplankton and macrophyte on the microbial community structure and its carbon cycling in lakes.Microbiology,China,2013,40(1):87-97.DOI:10.13344/j.microbiol.china.2013.01.003.[吴庆龙,邢鹏,李化炳等.草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响.微生物学通报,2013,40(1):87-97.]
    [4]Carpenter SR,Caraco NF,Correll DL et al.Nonpoint pollution of surface waters with phosphorus and nitrogen.Ecological Applications,1998,8(3):559-568.DOI:10.2307/2641247.
    [5]Huttunen JT,Hammar T,Alm J et al.Greenhouse gases in non-oxygenated and artificially oxygenated eutrophied lakes during winter stratification.Journal of Environmental Quality,2001,30(2):387-394.DOI:10.2134/jeq2001.302387x.
    [6]Verpoorter C,Kutser T,Seekell DA et al.A global inventory of lakes based on high-resolution satellite imagery.Geophysical Research Letters,2014,41(18):6396-6402.DOI:10.1002/2014GL060641.
    [7]Tranvik LJ,Downing JA,Cotner JB et al.Lakes and reservoirs as regulators of carbon cycling and climate.Limnology and Oceanography,2009,54(6part2):2298-2314.DOI:10.4319/lo.2009.54.6_part_2.2298.
    [8]Battin TJ,Kaplan LA,Findlay S et al.Biophysical controls on organic carbon fluxes in fluvial networks.Nature Geoscience,2008,1(2):95-100.DOI:10.1038/ngeo602.
    [9]Bastviken D,Cole J,Pace M et al.Methane emissions from lakes:Dependence of lake characteristics,two regional assessments,and a global estimate.Global Biogeochemical Cycles,2004,18(4):GB4009.DOI:10.1029/2004GB002238.
    [10]Huttunen JT,Alm J,Saarijrvi E et al.Contribution of winter to the annual CH4emission from a eutrophied boreal lake.Chemosphere,2003,50(2):247-250.DOI:10.1016/S0045-6535(02)00148-0.
    [11]Gudasz C,Bastviken D,Steger K et al.Temperature-controlled organic carbon mineralization in lake sediments.Nature,2010,466(7305):478-481.DOI:10.1038/nature09186.
    [12]Walter Anthony KM,Vas DA,Brosius L et al.Estimating methane emissions from northern lakes using ice-bubble surveys.Limnology&Oceanography Methods,2010,8(6):592-609.DOI:10:4319/lom.2010.8.592.
    [13]Marotta H,Pinho L,Gudasz C et al.Greenhouse gas production in low-latitude lake sediments responds strongly to warming.Nature Climate Change,2014,4(6):467-470.DOI:10.1038/NCLIMATE2222.
    [14]Wang H,Lu J,Wang W et al.Methane fluxes from the littoral zone of hypereutrophic Taihu Lake,China.Journal of Geophysical Research-Atmospheres,2006,111(D17):4093-4100.DOI:10.1029/2005JD006864.
    [15]Wang H,Wang W,Yin C et al.Littoral zones as the“hotspots”of nitrous oxide(N2O)emission in a hyper-eutrophic lake in China.Atmospheric Environment,2006,40(28):5522-5527.DOI:10.1016/j.atmosenv.2006.05.032.
    [16]Xing Y,Xie P,Yang H et al.Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China.Atmospheric Environment,2005,39(30):5532-5540.DOI:10.1016/j.atmosenv.2005.06.010.
    [17]Weiss RF,BA Price.Nitrous oxide solubility in water and seawater.Marine Chemistry,1980,8(4):347-359.DOI:10.1016/0304-4203(80)90024-9.
    [18]Wiesenburg DA,Guinasso Jr NL.Equilibrium solubilities of methane,carbon monoxide,and hydrogen in water and sea water.Journal of Chemical and Engineering Data,1979,24(4):356-360.DOI:10.1021/je60083a006.
    [19]Yao XL,Xu HX,Tang CJ et al.Denitrification potential of high suspend sediments in Poyang Lake,China.China Environmental Science,2015,35(3):846-855.[姚晓龙,徐会显,唐陈杰等.鄱阳湖水体悬浮物反硝化潜力模拟研究.中国环境科学,2015,35(3):846-855.]
    [20]Yan X,Xu X,Wang M et al.Climate warming and cyanobacteria blooms:Looks at their relationships from a new perspective.Water Research,2017,125:449-457.DOI:10.1016/j.watres.2017.09.008.
    [21]Chen M,Li XH,He YH et al.Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake.Water Research,2016,96:94-104.DOI:10.1016/j.watres.2016.03.030.
    [22]Komada T,Burdige DJ,Crispo SM et al.Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin.Geochimica et Cosmochimica Acta,2013,110(3):253-273.DOI:10.1016/j.gca.2013.02.017.
    [23]Duc NT,Crill P,Bastviken D.Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments.Biogeochemistry,2010,100(1/2/3):185-196.DOI:10.1007/s10533-010-9415-8.
    [24]Lay JJ,Miyahara T,Noike T.Methane release rate and methanogenic bacterial populations in lake sediments.Water Research,1996,30(4):901-908.DOI:10.1016/0043-1354(95)00254-5.
    [25]Hu WT,Tang Q,Sun W et al.Dissovled methane dynamics during the degradation of organic matter derived from cyanobacterial bloom.China Environmental Science,2017,37(2):702-710.[胡万婷,唐千,孙伟等.水体中蓝藻水华分解产甲烷动态过程研究.中国环境科学,2017,37(2):702-710.]
    [26]Juutinen S,Alm J,Larmola T et al.Major implication of the littoral zone for methane release from boreal lakes.Global Biogeochemical Cycles,2003,17(4):1117.DOI:10.1029/2003GB002105.
    [27]Seitzinger SP.Denitrification in freshwater and coastal marine ecosystems:ecological and geochemical significance.Limnology and Oceanography,1988,33(4part2):702-724.DOI:10.4319/lo.1988.33.4part2.0702.
    [28]Usui T,Koike I,Ogura N.N2O production,nitrification and denitrification in an estuarine sediment.Estuarine Coastal&Shelf Science,2001,52(6):769-781.DOI:10.1006/ecss.2000.0765.
    [29]Johansson AE,Kasimir Klemedtsson,Klemedtsson L et al.Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater.Tellus Series B-chemical&Physical Meteorology,2003,55(3):737-750.DOI:10.3402/tellusb.v55i3.16363.
    [30]Jrgensen CJ,Struwe S,Elberling B.Temporal trends in N2O flux dynamics in a Danish wetland-effects of plant-mediated gas transport of N2O and O2following changes in water level and soil mineral-N availability.Global Change Biology,2012,18(1):210-222.DOI:10.1111/j.1365-2486.2011.02485.x.
    [31]Gao YX,Cai LL,Zhao LL et al.Water quality comparison between lake Taihu and contribute river during high water-level period.Environmental Science,2011,32(10):2840-2848.DOI:10.13227/j.hjkx.2011.10.025.[高永霞,蔡琳琳,赵林林等.丰水期环太湖河流与湖区水质比较研究.环境科学,2011,32(10):2840-2848.]
    [32]King GM,Wiebe WJ.Methane release from soils of a Georgia salt marsh.Geochimica et Cosmochimica Acta,1978,42(4):343-348.DOI:10.1016/0016-7037(78)90264-8.
    [33]Xiao Q,Zhang M,Hu Z et al.Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate.Journal of Geophysical Research Biogeosciences,2017,122(7):1-18.DOI:10.1002/2017JG003805.
    [34]Wang SM,Dou HS eds.Chinese lakes.Beijing:Science Press,1998:3-21.[王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998:3-21.]
    [35]Qin BQ.Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangtze River.J Lake Sci,2002,14(3):193-202.DOI:10.18307/2002.0301.[秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探.湖泊科学,2002,14(3):193-202.]
    [36]Bastviken D,Cole JJ,Pace ML et al.Fates of methane from different lake habitats:Connecting whole-lake budgets and CH4emissions.Journal of Geophysical Research Biogeosciences,2008,113(G02024):61-74.DOI:10.1029/2007JG000608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700