唐古特白刺叶性状及叶片δ~(13)C、δ~(15)N沿降水梯度的变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation in leaf traits and leaf δ~(13)C and δ~(15)N content in Nitraria tangutorum along precipitation gradient
  • 作者:董雪 ; 李永华 ; 辛智鸣 ; 刘明虎 ; 郝玉光 ; 刘丹一 ; 陈新均 ; 张正国
  • 英文作者:DONG Xue;LI Yonghua;XIN Zhiming;LIU Minghu;HAO Yuguang;LIU Danyi;CHEN Xinjun;ZHANG Zhengguo;Experimental Center of Desert Forestry, Chinese Academy Forestry;State Forestry Administration Dengkou Desert Ecosystem Location Research Station;Institute of Desertification Studies, Chinese Academy Forestry;National Forestry Bureau′s Kumtage Desert Ecosystem Location Research Station;State Forestry Administration Dunhuang Desert Ecosystem Location Research Station;China Sand Industry Association;
  • 关键词:唐古特白刺 ; 叶性状 ; 稳定同位素 ; 降水梯度 ; 环境因子
  • 英文关键词:Nitraria tangutorum Bobr.;;leaf trait;;stable isotope;;precipitation gradient;;environmental factor
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国林业科学研究院沙漠林业实验中心;内蒙古磴口荒漠生态系统国家定位观测研究站;中国林业科学研究院荒漠化研究所;库姆塔格荒漠生态系统国家定位观测研究站;甘肃敦煌荒漠生态系统国家定位观测研究站;中国治沙暨沙业学会;
  • 出版日期:2019-03-08 16:16
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:中央级公益性科研院所基本科研业务费专项资金中国林业科学研究院资助项目(CAFYBB2016MA012);; 国家自然科学基金项目(41671049,31200536,4167012152)
  • 语种:中文;
  • 页:STXB201910027
  • 页数:10
  • CN:10
  • ISSN:11-2031/Q
  • 分类号:304-313
摘要
叶片性状反映了植物对环境的适应能力及自我调控能力。以唐古特白刺天然种群为研究对象,沿300—40 mm年降水梯度,测定了7个样地的唐古特白刺叶片性状及叶片δ~(13)C、δ~(15)N。结果表明:(1)沿降水梯度变化,7个地区唐古特白刺叶宽、长宽比、叶厚、叶面积、比叶面积、叶氮含量、叶片δ~(13)C和δ~(15)N变异性显著(P<0.05),而叶长差异不显著(P>0.05)。唐古特白刺通过叶片各功能性状间的调节来适应环境的变化,并形成性状间的最佳功能组合。(2)唐古特白刺叶片δ~(13)C与叶面积、比叶面积呈负相关关系,与叶氮含量呈正相关关系,但其相关性均未达到显著性水平(P>0.05),仅与地下水埋深表现出了极显著的正相关关系(P<0.01)。在降水量小于100 mm的区域,白刺主要利用地下水源,成为隐域植被,从而降低了对其他环境因子的响应。(3)叶片厚度和叶氮含量可以作为体现不同地区间唐古特白刺差异的叶功能性状。数据显示叶片厚度与年平均温度正相关(P<0.05),尤其与年最高气温大于35℃日数关系更为密切(P<0.01);在高温环境下,叶片增厚的同时叶氮含量显著降低(P<0.05),而这一过程中叶片δ~(15)N值却有增加趋势(R~2=0.62,P<0.05),因此叶厚度和叶氮含量对叶片δ~(15)N的相对影响在干旱与半干旱区之间发生转变,这为进一步探究干旱区荒漠植被的水分限制阈值提供了新思路。
        Leaf traits reflect the adaptability of plants to their surrounding environment and their self-regulatory capacity. In this study, the leaf traits, and leaf δ~(13)C and δ~(15)N content of Nitraria tangutorum natural populations were determined along the precipitation gradient(from 300 to 40 mm) in seven experimental plots. The results showed the following.(1) With changes in precipitation gradient, the leaf width(LW), length to width ratio(LWR), leaf thickness(LT), leaf area(LA), specific leaf area(SLA), leaf nitrogen content(LNC), and leaf δ~(13)C and δ~(15)N content of N. tangutorum in the seven plots were significantly different(P<0.05), but the difference in leaf length(LL) was not significant(P>0.05). N. tangutorum adapted to the changes in the environment by regulating various functional traits of its leaves and forming optimum functional combinations of the traits.(2) There was a negative correlation between leaf δ~(13)C content and leaf area(LA), and SLA, and positive correlation between leaf δ~(13)C content and LNC; however, these correlations were not significant(P>0.05). Only groundwater depth and leaf δ~(13)C content showed a very significant positive correlation(P<0.01). In the areas with precipitation<100 mm, N. tangutorum mainly used groundwater sources, thereby becoming a hidden vegetation, which reduced its response to other environmental factors.(3) The LT and LNC can be used as leaf functional traits that reflect the difference in N. tangutorum among different regions. The data showed that LT was positively correlated with the annual average temperature(P<0.05), especially on days when the annual maximum temperature was>35 °C(P<0.01). In high-temperature environments, LNC decreased significantly(P<0.05), but LT and leaf δ~(15)N content increased during this process(R~2 = 0.62, P<0.05). Therefore, the relative influence of LT and LNC on leaf δ~(15)N content changed between arid and semi-arid regions, providing new insights to further explore the water limit threshold of desert vegetation in arid regions.
引文
[1] Royer D L,Miller I M,Peppe D J,Hickey L J.Leaf economic traits from fossils support a weedy habit for early angiosperms.American Journal of Botany,2010,97(3):438- 445.
    [2] Scoffoni C,Rawls M,McKown A,Cochard H,Sack L.Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture.Plant Physiology,2011,156(2):832- 843.
    [3] 王常顺,汪诗平.植物叶片性状对气候变化的响应研究进展.植物生态学报,2015,39(2):206- 216.
    [4] Wang C Y,Zhou J W,Xiao H G,Liu J,Wang L.Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang,China.Journal of Forestry Research,2017,28(2):241- 248.
    [5] 李东胜,史作民,冯秋红,刘峰.中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应.植物生态学报,2013,37(9):793- 802.
    [6] 韩威,刘超,樊艳文,赵娜,叶思阳,尹伟伦,王襄平.长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征.北京林业大学学报,2014,36(4):47- 53.
    [7] 冯秋红,史作民,董莉莉,刘世荣.南北样带温带区栎属树种功能性状对气象因子的响应.生态学报,2010,30(21):5781- 5789.
    [8] 王瑞丽,于贵瑞,何念鹏,王秋凤,赵宁,徐志伟.中国森林叶片功能属性的纬度格局及其影响因素.地理学报,2015,70(11):1735- 1746.
    [9] 苏文华,施展,杨波,杨建军,赵冠华,周睿.滇石栎沿纬度梯度叶片功能性状的种内变化.植物分类与资源学报,2015,37(3):309- 317.
    [10] 李永华,卢琦,吴波,朱雅娟,刘殿君,张金鑫,靳占虎.干旱区叶片形态特征与植物响应和适应的关系.植物生态学报,2010,36(1):88- 98.
    [11] 蔡海霞,吴福忠,杨万勤.干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响.生态学报,2011,31(9):2430- 2436.
    [12] 何季,吴波,贾子毅,曹燕丽,姚斌.白刺光合生理特性对人工模拟增雨的响应.林业科学研究,2013,26(1):58- 64.
    [13] Wright I J,Westoby M,Reich P B.Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span.Journal of Ecology,2002,90(3):534- 543.
    [14] Reich P B,Wright I J,Cavender-Bares J,Craine J M,Oleksyn J,Westoby M,Walters M B.The Evolution of plant functional variation:traits,spectra,and strategies.International Journal of Plant Sciences,2003,164(S3):S143-S164.
    [15] Wright I J,Reich P B,Westoby M.Strategy shifts in leaf physiology,structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats.Functional Ecology,2001,15(4):423- 434.
    [16] 李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较.生态学报,2005,25(2):304- 311.
    [17] Easlon H M,Nemali K S,Richards J H,Hanson D T,Juenger T E,McKay J K.The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana.Photosynthesis Research,2014,119(1/2):119- 129.
    [18] Mohale K C,Belane K A,Dakora F D.Symbiotic N nutrition,C assimilation,and plant water use efficiency in Bambara groundnut (Vigna subterranea L.Verdc) grown in farmers′ fields in South Africa,measured using 15N and 13C natural abundance.Biology and Fertility of Soils,2014,50(2):307- 319.
    [19] Dawson T E,Mambelli S,Plamboeck A H,Templer P H,Tu K P.Stable isotopes in plant ecology.Annual Review of Ecology and Systematics,2002,33:507- 559.
    [20] Horton J L,Kolb T E,Hart S C.Physiological response to groundwater depth varies among species and with river flow regulation.Ecological Applications,2001,11(4):1046- 1059.
    [21] Dudley S A.Differing selection on plant physiological traits in response to environmental water availability:a test of adaptive hypotheses.Evolution,1996,50(1):92- 102.
    [22] Pardo L H,Templer P H,Goodale C L,Duke S,Groffman P M,Adams M B,Boeck P,Boggs J,Campbell J,Colman B,Compton J,Emmett B,Gundersen P,Kj?naas J,Lovett G,Mack M,Magill A,Mbila M,Mitchell M J,McGee G,McNulty S,Nadelhoffer K,Ollinger S,Ross D,Rueth H,Rustad L,Schaberg P,Schiff S,Schleppi P,Spoelstra J,Wessel W.Regional assessment of N saturation using foliar and root δ15N.Biogeochemistry,2006,80(2):143- 171.
    [23] Wright I J,Reich P B,Cornelissen J H C,Falster D S,Groom P K,Hikosaka K,Lee W,Lusk C H,Niinemets ü,Oleksyn J,Osada N,Poorter H,Warton D I,Westoby M.Modulation of leaf economic traits and trait relationships by climate.Global Ecology and Biogeography,2005,14(5):411- 421.
    [24] Wright I J,Reich P B,Cornelissen J H C,Falster D S,Garnier E,Hikosaka K,Lamont B B,Lee W,Oleksyn J,Osada N,Poorter H,Villar R,Warton D I,Westoby M.Assessing the generality of global leaf trait relationships.New Phytologist,2005,166(2):485- 496.
    [25] Liu C,Wang X P,Wu X,Dai S,He J S,Yin W L.Relative effects of phylogeny,biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia,China.Journal of Plant Ecology,2013,6(3):220- 231.
    [26] Gratani L,Meneghini M,Pesoli P,Crescente M F.Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy.Trees,2003,17(6):515- 521.
    [27] Robson T M,Rasztovits E,Aphalo P J,Alia R,Aranda L.Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja,Spain,segregate according to their climate of origin.Agricultural and Forest Meteorology,2013,180:76- 85.
    [28] 蒋艾平,姜景民,刘军.檫木叶片性状沿海拔梯度的响应特征.生态学杂志,2016,35(6):1467- 1474.
    [29] Baldos A P,Corre M D,Veldkamp E.Response of N cycling to nutrient inputs in forest soils across a 1000- 3000 m elevation gradient in the Ecuadorian Andes.Ecology,2015,96(3):749- 761.
    [30] 孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能.植物生态学报,2007,31(1):150- 165.
    [31] Reich P B,Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001- 11006.
    [32] He J S,Fang J Y,Wang Z H,Guo D L,Flynn D F B,Geng Z.Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.Oecologia,2006,149(1):115- 122.
    [33] Fonseca C R,Overton J M,Collins B,Westoby M.Shifts in trait-combinations along rainfall and phosphorus gradients.Journal of Ecology,2000,88(6):964- 977.
    [34] Wright I J,Reich P B,Westoby M,Ackerly D D,Baruch Z,Bongers F,Cavender-Bares J,Chapin T,Cornelissen J H C,Diemer M,Flexas J,Garnier E,Groom P K,Gulias J,Hikosaka K,Lamont B B,Lee T,Lee W,Lusk C,Midgley J J,Navas M L,Niinemets ü,Oleksyn J,Osada N,Poorter H,Poot P,Prior L,Pyankov V I,Roumet C,Thomas S C,Tjoelker M G,Veneklaas E J,Villar R.The worldwide leaf economics spectrum.Nature,2004,428(6985):821- 827.
    [35] Cornelissen J H C,Lavorel S,Garnier E,Díaz S,Buchmann N,Gurvich D E,Reich P B,ter Steege H,Morgan H D,van der Heijden M G A,Pausas J G,Poorter H.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany,2003,51(4):335- 380.
    [36] Richards J H,Caldwell M M.Hydraulic lift:substantial nocturnal water transport between soil layers by Artemisia tridentata roots.Oecologia,1987,73(4):486- 489.
    [37] Xu Q,Li H B,Chen J Q,Cheng X L,Liu S R,An S Q.Water use patterns of three species in subalpine forest,Southwest China:the deuterium isotope approach.Ecohydrology,2011,4(2):236- 244.
    [38] 韩家懋,王国安,刘东生.C4植物的出现与全球环境变化.地学前缘,2002,9(1):233- 243.
    [39] 任书杰,于贵瑞.中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率.植物生态学报,2011,35(2):119- 124.
    [40] 刘光琇,陈拓,安黎哲,王勋陵,冯虎元.青藏高原北部植物叶片碳同位素组成特征的环境意义.地球科学进展,2004,19(5):749- 753.
    [41] 周咏春,樊江文,钟华平,张文彦.青藏高原草地群落植物碳同位素组成与海拔梯度的关系.中国科学:地球科学,2013,43(1):120- 130.
    [42] 苏波,韩兴国,李凌浩,黄建辉,白永飞,渠春梅.中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应.植物生态学报,2000,24(6):648- 655.
    [43] Stuiver M,Braziunas T F.Tree cellulose 13C/12C isotope ratios and climatic change.Nature,1987,328(6125):58- 60.
    [44] 马剑英,陈发虎,夏敦胜,孙惠玲,段争虎,王刚.荒漠植物红砂叶片δ13C值与生理指标的关系.应用生态学报,2008,19(5):1166- 1171.
    [45] Ares A,Fownes J H.Productivity,nutrient and water-use efficiency of Eucalyptus saligna and Toonaciliata in Hawaii.Forest Ecology and Management,2000,139(1/3):227- 236.
    [46] Aranibar J N,Otter L,Macko S A,Feral C J W,Epstein H E,Dowty P R,Eckardt F,Shugart H H,Swap R J.Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands.Global Change Biology,2004,10(3):359- 373.
    [47] 刘贤赵,张勇,宿庆,田艳林,王庆,全斌.陆生植物氮同位素组成与气候环境变化研究进展.地球科学进展,2014,29(2):216- 226.
    [48] Martinelli L A,Piccolo M C,Townsend A R,Vitousek P M,Cuevas E,McDowell W,Robertson G P,Santos O C,Treseder K.Nitrogen stable isotopic composition of leaves and soil:tropical versus temperate forests.Biogeochemistry,1999,46(1/3):45- 65.
    [49] 刘晓宏,赵良菊,Gasaw M,高登义,秦大河,任贾文.东非大裂谷埃塞俄比亚段内C3植物叶片δ13C和δ15N及其环境指示意义.科学通报,2007,52(2):199- 206.
    [50] 刘卫国,王政.黄土高原现代植物-土壤氮同位素组成及对环境变化的响应.科学通报,2008,53(23):2917- 2924.
    [51] Craine J M,Elmore A J,Aidar M P M,Bustamante M,Dawson T E,Hobbie E A,Kahmen A,Mack M C,Mclauchlan K K,Michelsen A,Nardoto G B,Pardo L H,Peňuelas J,Reich P B,Schuur E A G,Stock W D,Templer P H,Virginia R A,Welker J M,Wright I J.Global patterns of foliar nitrogen isotopes and their relationships with climate,mycorrhizal fungi,foliar nutrient concentrations,and nitrogen availability.New Phytologist,2009,183(4):980- 992.
    [52] Hobbie E A,Macko S A,Williams M.Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions.Oecologia,2000,122(2):273- 283.
    [53] K?rner C.The nutritional status of plants from high altitudes.Oecologia,1989,81(3):379- 391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700