含孪尾结构两性离子共聚物的合成及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Properties of A Zwitterionic Copolymer Containing Twin-Tail Structure
  • 作者:彭川 ; 苟绍华 ; 费玉梅 ; 张慧超 ; 王佩佩
  • 英文作者:PENG Chuan;GOU Shao-hua;FEI Yu-mei;ZHANG Hui-chao;WANG Pei-pei;College of Chemistry and Chemical Engineering, Southwest Petroleum University;Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University;
  • 关键词:孪尾结构 ; 两性离子共聚物 ; 表观黏度 ; 流变性能 ; 提高采收率 ; 油田化学品
  • 英文关键词:twin-tail structure;;zwitterionic copolymer;;apparent viscosity;;rheological properties;;enhanced oil recovery;;oil-field chemicals
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:西南石油大学化学化工学院;西南石油大学油气田应用化学四川省重点实验室;
  • 出版日期:2019-03-14 09:54
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:四川省科技支撑计划项目(2016GZ0274);; 西南石油大学课外开放实验(KSZ17113)
  • 语种:中文;
  • 页:JXHG201907029
  • 页数:8
  • CN:07
  • ISSN:21-1203/TQ
  • 分类号:205-212
摘要
以丙烯酰胺(AM)、丙烯酸(AA)、N,N-二辛基甲基丙烯酰胺(DLMB)和3-(2-甲基丙烯酰胺丙基二甲胺基)丙磺酸盐(MDPS)为单体,通过自由基共聚,制备了一种含孪尾结构的两性离子共聚物驱油剂(AADM)。对共聚物进行了红外、核磁表征并确认了其结构,热重实验分析了热稳定性,并与部分水解聚丙烯酰胺(HPAM)进行了对比,考察了该共聚物的增黏性、水溶性、抗老化、剪切稀释性、剪切恢复性和耐温抗盐性。结果表明,共聚物AADM具有优异的水溶性和增黏性,在2000 mg/L的质量浓度下可使表观黏度达到466.5 mPa·s;在510s–1的剪切速率下,其表观黏度为60.4 mPa·s;在120℃下,其表观黏度能够达到182.6 mPa·s;在经过30 d的老化实验后其表观黏度为94.6 mPa·s;在15000 mg/L NaCl、2000 mg/L MgCl_2和2000 mg/L CaCl_2溶液中,该共聚物的表观黏度分别为77.8、72.4和68.6 mPa·s。在岩心驱替实验中,共聚物溶液能够将采收率提高7.72%。以上实验结果均优于相同条件下的HPAM,这是因为孪尾结构的引入有效地增强了共聚物的疏水缔合能力,两性离子单体的引入削弱了分子链对盐的敏感度。
        A zwitterionic copolymer(AADM) containing twin-tail structure was synthesized using acrylamide(AM), acrylic acid(AA), N,N-dioctylmethacrylamide(DLMB) and 3-(2-methacrylamidopropyldimethylamino)propane sulfonate(MDPS) as monomers via free-radical copolymerization. The copolymer was characterized by FTIR and 1 HNMR and its thermostability was measured by TG-DTG. The copolymer was compared with partially hydrolyzed polyacrylamide(HPAM) to investigate its thickening property, water solubility, aging resistance, shear thinning, temperature tolerance and salt resistance. The results showed that the copolymer had excellent water solubility and thickening property, and its apparent viscosity could reach 466.5 mPa·s at2000 mg/L. The apparent viscosity of the copolymer could remain 60.4 mPa·s under 510 s–1 and 182.6 mPa·s at 120 ℃. And the viscosity retention value of AADM could remain 94.6 mPa·s after 30 days of aging.When the copolymer was dissolved in 15000 mg/L NaCl, 2000 mg/L MgCl_2 and 2000 mg/L CaCl_2 solutions,the corresponding apparent viscosity of solution was 77.8, 72.4 and 68.6 mPa·s, respectively. Core flooding experiment further indicated that the copolymer solution could enhance oil recovery by 7.72%. The above experimental results are superior to those of HPAM under the same conditions, because the introduction of the twin-tail structure effectively enhances the hydrophobic association ability of the copolymer, and the introduction of the zwitterionic monomer weakens the sensitivity of the molecular chain to the salt.
引文
[1]Wever D A Z,Picchioni F,Broekhuis A A.Polymers for enhanced oil recovery:A paradigm for structure-property relationship in aqueous solution[J].Progress in Polymer Science,2011,36(11):1558-1628.
    [2]Kamal M S,Sultan A S,Almubaiyedh U A,et al.Review on polymer flooding:Rheology,adsorption,stability,and field applications of various polymer systems[J].Polymer Reviews,2015,21(3):1-40.
    [3]Li S,Gou S,Zhou L,et al.Prominent temperature-response and salt irritation from self-assemblies of polyzwitterion-sodium lauryl sulfonate[J].Journal of Molecular Liquids,2018,253(1):305-313.
    [4]Pu W F,Yang Y,Wei B,et al.The potential of aβ-cyclodextrin/adamantane modified copolymer in enhancing oil recovery through host-guest interactions[J].Industrial&Engineering Chemistry Research,2016,55(31):8679-8689.
    [5]Gou S,He Y,Zhou L,et al.An anti-biodegradable hydrophobic sulfonate-based acrylamide copolymer containing 2,4-dichlorophenoxy for enhanced oil recovery[J].New Journal of Chemistry,2015,39(12):9265-9274.
    [6]Jha P K,Mahto V,Saxena V K.Study the effects of xanthan gum and aluminium stearate on the properties of oil-in-water emulsion drilling fluids[J].Arabian Journal for Science&Engineering,2016,41(1):143-153.
    [7]Ghannam M T,Selim M Y E,Zekri A Y,et al.Experimental investigation of the yield stress measurements for xanthan solutions and crude oil-xanthan emulsions[J].Liquid Fuels Technology,2016,34(6):546-554.
    [8]Romero-Zerón B W L.The evaluation of a technological trend in polymer flooding for heavy oil recovery[J].Liquid Fuels Technology,2014,32(19):2396-2404.
    [9]Zhu D,Bai B,Hou J.Polymer gel systems for water management in high-temperature petroleum reservoirs:A chemical review[J].Energy&Fuels,2017,31(12):13063-13087.
    [10]Pu W F,Liu R,Peng Q,et al.Amphiphilically modified chitosan copolymer for enhanced oil recovery in harsh reservoir condition[J].Journal of Industrial&Engineering Chemistry,2016,37(3):216-223.
    [11]Lowe A B,Mccormick C L.Synthesis and solution properties of zwitterionic polymers[J].Chemical Reviews,2002,102(11):4177-4189.
    [12]Ye T,Song Y,Zheng Q.Salt response and rheological behavior of acrylamide-sulfobetaine copolymer[J].Colloid&Polymer Science,2016,294(2):389-397.
    [13]Ye Lin(叶林),Huang Ronghua(黄荣华).Synthesis and studies on the solution properties of AM-AMPS-DMDA hydrophobic ampholytic copolymer[J].Polymer Materials Science and Engineering(高分子材料科学与工程),1998,14(3):67-70.
    [14]Gou Shaohua(苟绍华),Fei Yumei(费玉梅),Zhang Qin(张勤),et al.Synthesis and properties of a zwitterionic copolymer containing phosphate group[J].Fine Chemicals(精细化工),2018,35(1):141-148.
    [15]Ma X,Zhu Z,Shi W,et al.Synthesis and application of a novel betaine-type copolymer as fluid loss additive for water-based drilling fluid[J].Colloid&Polymerence,2017,295(1):1-14.
    [16]Wang Lin(王琳),Yang Xiaohua(杨小华),Lin Yongxue(林永学),et al.The synthesis and evaluation of a new zwitterionic copolymer(AM/DEPS)[J].Petroleum Drilling Techniques(石油钻探技术),2016,(5):72-78.
    [17]Ren B,Gao Y,Lu L,et al.Aggregates of alginates binding with surfactants of single and twin alkyl chains in aqueous solutions:Fluorescence and dynamic light scattering studies[J].Carbohydrate Polymers,2006,66(2):266-273.
    [18]Smith G L,Mccormick C L.Rheological and photophysical studies of pH-responsive terpolymers containing hydrophobic twin-tailed acrylamide monomers[J].Macromolecules,2001,34(16):5579-5586.
    [19]Guo Haopeng(郭浩鹏),Gao Baojiao(高保娇),Zhang Yan(章艳),et al.Preparing HAPAM containing twin tail-type acrylamide in newmicellar polymerization system and relationship between itschain structure and hydrophobic associativity[J].Journal of Functional Polymers(功能高分子学报),2008,21(2):117-122.
    [20]Bakshi M S,Kaura A,Mahajan R K.Effect of temperature on the micellar properties of polyoxyethylene glycol ethers and twin tail alkylammonium surfactants[J].Colloids&Surfaces A Physicochemical&Engineering Aspects,2005,262(1):168-174.
    [21]Zhu Z,Kang W,Sarsenbekuly B,et al.Preparation and solution performance for the amphiphilic polymers with different hydrophobic groups[J].Journal of Applied Polymer Science,2017,134(20):44744-44753.
    [22]Deng Limin(邓利民),Li Shiwei(李世伟),Hou Yingtian(侯映天),et al.Preparation and study of a sulfite salt copolymer[J].Chemical Research and Application(化学研究与应用),2018,30(4):557-564.
    [23]The Quality and Technology Supervision Bureau(质量技术监督局).Determination for limiting viscosity number of polyacrylamide(聚丙烯酰胺特性粘数测定方法):GB/T 12005.1-1989[S].Beijing:Standards Press of China(中国标准出版社),2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700