激光选区熔化成形Ti6Al4V合金的热处理组织演变机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat Treatment Microstructural Evolution of Selective Laser Melting Ti6Al4V Alloy
  • 作者:胡富国 ; 柯林达 ; 肖美立 ; 韩远飞 ; 吕维洁
  • 英文作者:HU Fuguo;KE Linda;XIAO Meili;HAN Yuanfei;Lü Weijie;State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University;Shanghai Engineering Technology Research Center of Near-Net-Shape Forming for Metallic Materials;Shanghai Aerospace Precision Machinery Institute;
  • 关键词:Ti6Al4V ; 增材制造 ; 微观组织 ; 马氏体相变 ; 拉伸性能
  • 英文关键词:Ti6Al4V;;additive manufacturing;;microstructure;;martensitic transformation;;tensile property
  • 中文刊名:SHHT
  • 英文刊名:Aerospace Shanghai
  • 机构:上海交通大学金属基复合材料国家重点实验室;上海金属材料近净成形工程技术研究中心;上海航天精密机械研究所;
  • 出版日期:2019-04-25
  • 出版单位:上海航天
  • 年:2019
  • 期:v.36;No.216
  • 基金:国家自然科学基金(U1602274,51501112,51875349,51741108,51701116);; 国家重点研发计划(2018YFB1106403);; 上海市科委基础研究项目(17JC1402600)
  • 语种:中文;
  • 页:SHHT201902011
  • 页数:8
  • CN:02
  • ISSN:31-1481/V
  • 分类号:100-107
摘要
激光选区熔化(SLM)Ti6Al4V成形构件需要通过热处理改善其塑性。为探究该过程中的组织特征和演变机理,研究了Ti6Al4V试样固溶时效热处理(910℃/8 h水冷,750℃/4 h炉冷)前后的微观形貌和力学性能。结果表明:沉积态的马氏体α′相尺寸具有层次结构;热处理相变时初生马氏体α′发生分解,小尺寸马氏体α′转变为β相,随后发生β→(α+β)转变,最后得到α相片层和精细(α+β)相结构均匀分布的组织;热处理后材料抗拉强度达1 055 MPa,延伸率提升至16.2%,均优于典型Ti6Al4V合金拉伸性能。采取的热处理技术对Ti6Al4V组织调控成效显著,满足后续工艺要求,可在激光选区熔化成形双相钛合金中推广应用。
        Heat treatments need to be applied to selective laser melting(SLM) produced Ti6 Al4 V to achieve the superior ductility. In order to explore the microstructure and transformation mechanism of the process, the microstructure and tensile properties of Ti6 Al4 V samples are studied during heat-treatment of solution and aging(at 910 ℃/8 h water cooling,750 ℃/4 h furnace cooling). The results are as follows. Martensite α′ phase size has a hierarchical structure. In the process of heat treatment, primary martensite α′ is decomposed, small-sized martensite α′ is transformed into β phase, whereafter β phase is transformed into(α+β) during the aging. Finally, coarse lamellar α phases and ultrafine lamellar(α+β) phases are uniformly distributed in the microstructure. After the heat treatment, the ultimate tensile strength of the Ti6 Al4 V reaches 1 055 MPa, and the elongation increases to 16.2%, which are better than the tensile properties of the national standard Ti6 Al4 V alloy. The heat-treated Ti6 Al4 V material can meet the requirements of subsequent processes, which can be popularized in the selective laser melting of the two-phase titanium alloy.
引文
[1] BRANDT M,SUN S J,LEARY M,et al.High-value SLM aerospace components:from design to manufacture[J].Advanced Materials Research,2013,633:135-147.
    [2] LI S,HASSANIN H,ATTALLAH M M,et al.The development of TiNi-based negative poisson's ratio structure using selective laser melting[J].Acta Materialia,2016,105:75-83.
    [3] ORME M,GSCHWEITL M,FERRARI M,et al.Additive manufacturing of lightweight,optimized,metallic components suitable for space flight[J].Journal of Spacecraft and Rockets,2017,54(5):1-10.
    [4] BéDUER A,PIACENTINI N,AEBERLI L,et al.Additive manufacturing of hierarchicalinjectable scaffolds for tissue engineering[J].Acta Biomaterialia,2018,76:71-79.
    [5] LIU Z Q,ZHAN J X,FARD M,et al.Acoustic properties of a porous polycarbonate material produced by additive manufacturing[J].Materials Letters,2016,181:296-299.
    [6] 周志强.选择性激光熔化成形TC4材料生物应用性研究[D].重庆:重庆大学,2015.
    [7] 陈光霞,曾晓雁,王泽敏,等.可摘除局部义齿支架的选择性激光熔化制造技术[J].现代制造工程,2010(6):64-68.
    [8] KHORASANI A,GIBSON I,GOLDBERG M,et al.On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V[J].Rapid Prototyping Journal,2017,23(2):295-304.
    [9] CAIN V,THIJS L,HUMBEECK J V,et al.Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J].Additive Manufacturing,2015,5:68-76.
    [10] WEISS I,SEMIATIN S L.Thermomechanical processing of beta titanium alloys:an overview[J].Materials Science & Engineering:A,1998,243(1/2):46-65.
    [11] DING R X,GUO Z X,WILSON A.Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing[J].Materials Science & Engineering:A,2002,327(2):233-245.
    [12] GU D D,MEINERS W,WISSENBACH K,et al.Laser additive manufacturing of metallic components:materials,processes and mechanisms[J].International Materials Reviews,2012,57(3):133-164.
    [13] VRANCKEN B,THIJS L,KRUTH J P,et al.Heat treatment of Ti6Al4V produced by selective laser melting:microstructure and mechanical properties[J].Journal of Alloys and Compounds,2012,541:177-185.
    [14] YADOLLAHI A,SHAMSAEI N,THOMPSON S M,et al.Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel[J].International Journal of Fatigue,2017,94:218-235.
    [15] SONG B,ZHAO X,LI S,et al.Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts:a review[J].Frontiers of Mechanical Engineering,2015,10(2):111-125.
    [16] 李文贤,易丹青,刘会群,等.热处理制度对选择性激光熔化成形TC4钛合金的组织与力学性能的影响[J].粉末冶金材料科学与工程,2017,22(1):70-78.
    [17] TER HAAR G M,BECKER T H.Selective laser melting produced Ti-6Al-4V:post-process heat treatments to achieve superior tensile properties[J].Materials,2018,11(1):1-15.
    [18] THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta Materialia,2010,58(9):3303-3312.
    [19] XU W,BRANDT M,SUN S,et al.Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J].Acta Materialia,2015,85:74-84.
    [20] DEBROY T,WEI H L,ZUBACK J S,et al.Additive manufacturing of metallic components:process,structure and properties[J].Progress in Materials Science,2018,92:112-224.
    [21] TAN X P,KOK Y,TOH W Q,et al.Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V[J].Scientific Reports,2016,6:26039.
    [22] BOYER R,WELSCH G,COLLINGS E W.Materials properties handbook:titanium alloys[M].Almere:ASM International,1994:540-556.
    [23] 王永梅,董洁,马忠贤,等.钛及钛合金饼和环:GB/T 16598—2013[S].2013.
    [24] YANG J J,YU H C,YIN J,et al.Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J].Materials & Design,2016,108:308-318.
    [25] YIN J,PENG G Y,CHEN C P,et al.Thermal behavior and grain growth orientation during selective laser melting of Ti-6Al-4V alloy[J].Journal of Materials Processing Technology,2018,260:57-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700