石墨烯及其衍生物在催化领域的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Graphene and Its Derivatives in Catalysis
  • 作者:李孟辉 ; 袁鸣蔚 ; 黄佳 ; 吴鸿杰 ; 李进军 ; 游志雄
  • 英文作者:LI Meng-hui;YUAN Ming-wei;HUANG Jia;WU Hong-jie;LI Jin-jun;YOU Zhi-xiong;School of Resources and Environmental Sciences, Wuhan University;
  • 关键词:石墨烯 ; 催化 ; 掺杂石墨烯
  • 英文关键词:graphene;;catalysis;;doped-graphene
  • 中文刊名:FZCH
  • 英文刊名:Journal of Molecular Catalysis(China)
  • 机构:武汉大学资源与环境科学学院;
  • 出版日期:2019-05-14 15:55
  • 出版单位:分子催化
  • 年:2019
  • 期:v.33;No.184
  • 基金:国家自然科学基金(21573163)~~
  • 语种:中文;
  • 页:FZCH201902013
  • 页数:11
  • CN:02
  • ISSN:62-1039/O6
  • 分类号:95-105
摘要
石墨烯具有特殊的光、电、热和力学等特性,期待被广泛应用于不同领域中,成为新型基础材料.然而,石墨烯完美的蜂巢结构、单一的元素组成,不利于其在催化领域的应用,通过掺杂改性可以对石墨烯的结构和性质进行调控,使其在燃料电池、光催化、电催化等领域表现出优异的性能.我们综述了氧化石墨烯、还原石墨烯、掺杂石墨烯等改性石墨烯的合成、表征及其在催化领域的研究进展,并结合自己的研究提出展望.关键字:
        Graphene is expected to be widely used as a novel basic material in versatile fields due to its special optical, electric, thermal and mechanic properties. However, the perfect honeycomb structure and single element composition of graphene limit its further application in catalysis. The structure and properties of graphene can be tuned via doping graphene with heterogeneous atoms to promote its catalytic performance in fuel cells, optic catalysis, electric catalysis, etc. In this paper, we reviewed the progress in synthesis and characterization of graphene oxide, reduced graphene oxide and doped graphene as well as their applications in catalysis, and some prospects were pointed out.
引文
[1] Geim A K,Novoselov K S.The rise of graphene[J].Nat Mater,2007,6(3):183-191.
    [2] Kuzmenko A B,Van H E,Carbone F,et al.Universal optical conductance of graphite[J].Phys Rev Lett,2008,100(11):117401-117404.
    [3] Perhun T I,Bychko I B,Trypolsky A I,et al.Catalytic properties of graphene material in the hydrogenation of ethylene[J].Theor & Exper Chem,2013,48(6):367-370.
    [4] Chen H,Müller M B,Gilmore K J,et al.Mechanically strong,electrically conductive,and biocompatible graphene paper[J].Adv Mater,2010,20(18):3557-3561.
    [5] Craciun M F,Russo S,Yamamoto M,et al.Tuneable electronic properties in graphene[J].Nano Today,2011,6(1):42-60.
    [6] Peres N M R.The electronic properties of graphene and its bilayer[J].Phys Sta Sol,2007,244(11):4106-4111.
    [7] Novoselov K S,Jiang Z,Zhang Y,et al.Room-temperature quantum hall effect in graphene[J].Science,2007,315(5817):1379-1379.
    [8] Hu M,Yao Z,Wang X.Graphene-based nanomaterials for catalysis[J].Indus & Engineer Chem Res,2017,56(13):3477-3502.
    [9] Abdala A.Applications of graphene in catalysis[J].J Biofer & Biopes,2014,5(1):1-10.
    [10] Kang C H,Burhanudin Z A,Saheed M S M,et al.Synthesis parameters and transfer techniques of mono-few layer graphene for transparent conductive electrode[C]// 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS).IEEE,2017.
    [11] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [12] Hass J,De Heer W A,Conrad E H.The growth and morphology of epitaxial multilayer graphene[J].J Phys:Conde Matter,2008,20(32):323202-323229.
    [13] Jiang L,Liu Y,Liu S,et al.Fabrication of β-cyclodextrin/poly (L-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17β-estradiol[J].Chem Engineer J,2017,308:597-605.
    [14] Primo A,Neatu F,Florea M,et al.Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation[J].Nat Commun,2014,5:1-8.
    [15] Biswas C,Lee Y H.Graphene vs carbon nanotubes in electronic devices:Graphene versus carbon nanotubes in electronic devices (Adv.Funct.Mater.20/2011)[J].Adv Func Mater,2011,21(20):3798-3798.
    [16] Huang C,Li C,Shi G.Graphene based catalysts[J].Ener & Environ Sci,2012,5(10):8848-8868.
    [17] a.Luo W,Zafeiratos S.A brief review of the synthesis and catalytic applications of graphene-coated oxides[J].Chemcatchem,2017,9(13):2432-2442.b.Wang Bing-yang(汪兵洋),Zheng Zhi-wen(郑治文),Zhao Kang(赵康),et al.Application of Non-covalent functionalized graphene / carbon nanotubes supported metal complex catalyst in catalytic reaction(非共价键功能化石墨烯 / 碳纳米管负载型金属配合物催化剂及催化反应中的应用) [J].J Mol Catal(China)(分子催化),2019,33(1):90-101.c.Tang Dan(唐丹),Yin Meng-yun(尹梦云),Song Xue-ping(宋雪平),et al.Graphitic carbon nitride (g-C3N4) photocatalyzed degradation MO using EDTA as efficient accelerating agent(EDTA 有效促进石墨相氮化碳(g-C3N4) 光催化降解甲基橙)[J].J Mol Catal(China)(分子催化),2018,32(5):461-470.d.Guo Hui-xia(郭惠霞),Yan Ren-xiang(闫任翔),Xi Xiao-hua(席晓华).Oxygen reduction reaction mechanisms on Pt-doped graphene oxide catalysts in acidic medium:DFT study(Pt掺杂氧化石墨烯在酸性介质中催化氧还原反应DFT研究 ) [J].J Mol Catal(China)(分子催化),2018,32(5):471-480.
    [18] a.Albero J,Garcia H.Doped graphenes in catalysis[J].J Mol Catal A Chem,2015,408:296-309.b.Chen Song-cong(陈松丛),Han Feng(韩峰),Liu Jian-hua(刘建华),et al.Progress in catalysis of ionic liquid covalently functionalized graphene oxide supported catalysts(离子液体共价键功能化氧化石墨烯负载催化材料催化反应研究进展) [J].J Mol Catal(China)(分子催化),2018,32(4):382-396.c.Yan Chao(晏超),Huang Guan(黄冠),Gao Yu-gui(高钰贵),et al.The performance of catalytic oxidize ethylbenzene over cobalt tetra ( p-nitrophenyl) porphyrin supported on graphene oxide(氧化石墨烯固载四(p-硝基苯基)钴卟啉催化氧化乙苯的性能) [J].J Mol Catal(China)(分子催化),2018,32(2):163-173.d.Lu Gong-xuan(吕功煊),Tian Bin(田彬).Formation of deuterium and helium during photocatalytic hydrogen generation from water catalyzed by Pt-graphene sensitized with Br-dye under visible light irradiation9溴染料敏化担载 Pt 石墨烯催化可见光制氢、氘和氦) [J].J Mol Catal(China)(分子催化),2017,31(2):101-104.
    [19] a.Julkapli N M,Bagheri S.Graphene supported heterogeneous catalysts:An overview[J].Inter J Hydro Ener,2015,40(2):948-979.b.Pang Shao-feng(庞少峰),Yuan Hang-kong(袁航空),Wu Ya-juan(吴亚娟),et al.Co@N-graphene/C catalyzed oxidative amination of toluene derivatives(Co@N-石墨烯/C催化甲苯衍生物氧化胺化研究) [J].J Mol Catal(China)(分子催化),2017,31(2):105-120.
    [20] Gong X,Liu G,Li Y,et al.Functionalized-graphene composites:Fabrication and applications in sustainable energy and environment[J].Chem Mater,2016:acs.chemmater.6b01447.
    [21] Cheng Y,Fan Y,Pei Y,et al.Graphene-supported me- tal/metal oxide nanohybrids:Synthesis and applications in heterogeneous catalysis[J].Catal Sci & Technol,2015,5(8):3903-3916.
    [22] Machado B F,Serp P.Graphene-based materials for catalysis[J].Catal Sci& Technol,2011,2(1):54-75.
    [23] Liu M,Zhang R,Chen W.Graphene-Supported Nanoelectrocatalysts for Fuel Cells:Synthesis,Properties,and Applications[J].Chem Rev,2014,114(10):5117-5160.
    [24] Brownson D A C,Kampouris D K,Banks C E.Graphene electrochemistry:Fundamental concepts through to prominent applications[J].Chem Soc Rev,2012,41(21):6944-6976.
    [25] Xu C,Wang X,Zhu J.Graphene-metal particle nanocomposite[J].J Phys Chem C,2008,112(50):19841-19845.
    [26] Xiang Q,Cheng B,Yu J.Graphene-based photocatalysts for solar-fuel generation[J].Angew Chemie Inter Edit,2015,54(39):11350-11366.
    [27] Shi Yong-sheng(史永胜),Li Xue-hong(李雪红),Ning Qing-ju(宁青菊).Preparation and research status of graphene(石墨烯的制备及研究现状)[J].Elect Comp Mater(电子元件与材料),2010,29(8):70-73.
    [28] Xu Chi(徐驰),Zhu He-guo(朱和国).Progress in fabrication and application of graphene(石墨烯的制备及其在能源方面的应用研究进展)[J].J Mater Sci Engineer(材料科学与工程学报),2016,34(2):326-332.
    [29] Avouris P,Dimitrakopoulos C.Graphene:Synthesis and applications[J].Mater Today,2012,15(3):86-97.
    [30] Jr K E W,Sheehan P E.Graphene synthesis[J].Diam Rela Mater,2014,46(24):25-34.
    [31] Reina A,Thiele S,Jia X,et al.Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces[J].Nano Res,2009,2(6):509-516.
    [32] Huet B,Raskin J P.Role of Cu foil in-situ annealing in controlling the size and thickness of CVD graphene domains[J].Carbon,2018,129:270-280.
    [33] Zhang Y,Zhang L,Zhou C.Review of chemical vapor deposition of graphene and related applications[J].Acc Chem Res,2013,46(10):2329-2339.
    [34] Huang H,Chen W,Chen S,et al.Bottom-up growth of epitaxial graphene on 6H-SiC(0001)[J].ACS Nano,2008,2(12):2513-2518.
    [35] Kathalingam A,Senthilkumar V,Rhee J K.Hysteresis I-V nature of mechanically exfoliated graphene FET[J].J Mater Sci Mater Electro,2014,25(3):1303-1308.
    [36] Stankovich S,Dikin D A,Piner R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558-1565.
    [37] Jr W S H,Offeman R E.Preparation of graphitic oxide[J].J Am Chem Soc,1958,80(6):1339.
    [38] Bai H,Li C,Shi G.Functional composite materials based on chemically converted graphene.[J].Adv Mater,2015,23(9):1088-1088.
    [39] Fan X,Zhang G,Zhang F.Multiple roles of graphene in heterogeneous catalysis[J].Chem Soc Rev,2015,46(29):3023-3035.
    [40] Yang Y,Murali R.Impact of size effect on graphene nanoribbon transport[J].IEEE Elect Dev Lett,2010,31(3):237-239.
    [41] Wang L,Ambrosi A,Pumera M.Cover picture:“Metal-Free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities (Angew.Chem.Int.Ed.51/2013)[J].Angew Chemie Inter Edit,2013,52(51):13479-13479.
    [42] Mazanek V,Luxa J,Matejkova S,et al.Ultrapure graphene is a poor electrocatalyst:Definitive proof of the key role of metallic impurities in graphene-based electrocatalysis[J].ACS nano,2019,acsnanO.8b07534.
    [43] Gierz I,Riedl C,Starke U,et al.Atomic hole doping of graphene[J].Nano Lett,2008,8(12):4603-4607.
    [44] Hwang E H,Adam S,Sarma S D.Transport in chemically doped graphene in the presence of adsorbed molecules[J].Phys Rev B,2007,76(195421):20742-4111.
    [45] Wang X ,Sun G ,Routh P ,et al.Heteroatom-doped graphene materials:Syntheses,properties and applications[J].Chem Soc Rev,2014,43(20):7067-7098.
    [46] Sui Y,Zhu B,Zhang H,et a.Temperature-dependent nitrogen configuration of N-doped graphene by chemical vapor deposition[J].Carbon,2015,81:814-820.
    [47] Wu T,Shen H,Sun L,et al.Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene,urea and boric acid[J].New J Chem,2012,36(6):1385-1391.
    [48] Wang H,Zhou Y,Wu D,et al.Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition.[J].Small,2013,9(8):1316-1320.
    [49] Duan J,Chen S,Jaroniec M,et al.Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J].Acs Catal,2015,5(9):5207-5232.
    [50] Wu Z S,Yang S,Yi S,et al.3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J].J Amer Chem Soc,2012,134(22):9082-9085.
    [51] Nemes-Incze P,Osváth Z,Kamarás K,et al.Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy[J].Carbon,2008,46(11):1435-1442.
    [52] Sikora A,Woszczyna M,Friedemann M,et al.AFM diagnostics of graphene-based quantum Hall devices[J].Micron,2012,43(2/3):479-486.
    [53] Novoselov K S.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [54] Paredes J I,Villar-Rodil S,Solis-Fernandez P,et al.Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide[J].Langmuir,2009,25(10):5957-5968.
    [55] Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
    [56] Hu M,Yao Z,Wang X.Graphene-based nanomaterials for catalysis[J].Indus & Engineer Chem Res,2017,56(13):3477-3502.
    [57] Bruno D L T,Svec Martin,Prokop H,et al.Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene[J].Nat Commun,2018,9(1):2831-2836.
    [58] Meyer J C,Sundaram R S,Chuvilin A,et al.Atomic structure of reduced graphene oxide[J].Nano Lett,2010,10(4):1144-1148.
    [59] Meyer J C,Kisielowski C,Erni R,et al.Direct imaging of lattice atoms and topological defects in graphene membranes[J].Nano Lett,2008,8(11):3582-3586.
    [60] Susi T,Pichler T,Ayala P.X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms[J].Beils J Nano,2015,6(1):177-192.
    [61] He L,Jing L,Luan Y,et al.Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight[J].Acs Catal,2014,4(3):990-998.
    [62] Stobinski L,Lesiak B,Malolepszy A,et al.Graphene oxide and reduced graphene oxide studied by the XRD,TEM and electron spectroscopy methods[J].J Elect Spectro Rel Pheno,2014,195(15):145-154.
    [63] Warren B E.X-Ray diffraction in random layer lattices[J].Phys Rev,1941,59(9):693-698.
    [64] Ferrari A C.Raman spectroscopy of graphene and graphite:Disorder,electron-phonon coupling,doping and nonadiabatic effects [J].Sol State Commun,2007,143(1):47-57.
    [65] Wall M.Raman spectroscopy optimizes graphene characterization[J].Advan Mater Proce,2012,170(4):35-38.
    [66] UHL,Fawn M,WILKIE,et al.Preparation of nanocomposites from styrene and modified graphite oxides[J].Poly Degra & Stab,2004,84(2):215-226.
    [67] Hontoria-Lucas C,López-Peinado A J,López-González J de D,et al.Study of oxygen-containing groups in a series of graphite oxides:Physical and chemical characterization[J].Carbon,1995,33(11):1585-1592.
    [68] Pendolino F,Armata N.Synthesis,Characterization and Models of Graphene Oxide[M]// Graphene Oxide in Environmental Remediation Process,2017.5-21.
    [69] Pyun J.Graphene oxide as catalyst:Application of carbon materials beyond nanotechnology[J].Angew Chemie Inter Edit,2011,50(1):46-48.
    [70] Jie Huang,Liming Zhang,Biao Chen,et al.Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in SERS and catalysis[J].Nanoscale,2010,2(12):2733-2738.
    [71] Chen X,Wu G,Chen J,et al.Synthesis of “Clean” and well-dispersive pd nanoparticles with excellent electro catalytic property on graphene oxide[J].J Ameri Chem Soc,2011,133(11):3693-3695.
    [72] Choi H C,Shim M,Bangsaruntip S,et al.Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes[J].J Amer Chem Soc,2002,124(31):9058-9059.
    [73] Ali H,Jana N R.Plasmonic photocatalysis:Complete degradation of bisphenol A by a gold nanoparticle-reduced graphene oxide composite under visible light[J].Photochem & Photobiol Sci,2018,17(5):628-637.
    [74] Castro Neto A H,Peres N M R,Novoselov K S,et al.The electronic properties of graphene[J].Rev Mod Phys,2009,81(1):109-162.
    [75] Berger C.Electronic confinement and coherence in patterned epitaxial graphene[J].Science,2006,312(5777):1191-1196.
    [76] Panchokarla L,Subrahmanyam K,Saha S,et al.Synthesis,structure,and properties of boron- and nitrogen-doped graphene[J].Advan Mater,2010,21(46):4726-4730.
    [77] Rao C N R,Gopalakrishnan K ,Govindaraj A.Synthesis,properties and applications of graphene doped with boron,nitrogen and other elements[J].Nano Today,2014,9(3):324-343.
    [78] Kong X K,Chen C L,Chen Q W.Doped graphene for metal-free catalysis[J].Chem Soc Rev,2014,43(8):2841-2857.
    [79] Maiyalagan T,Wang X,Wang H.Review on recent progress in nitrogen-doped graphene:Synthesis,characterization,and its potential applications[J].Acs Catal,2012,2(5):781-794.
    [80] Long J,Xie X,Xu J,et al.Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols[J].ACS Catal,2012,2(4):622-631.
    [81] Chen T W,Xu J Y,Sheng Z H,et al.Enhanced electrocatalytic activity of nitrogen-doped graphene for the reduction of nitro explosives[J].Electrochem Commun,2012,16(1):30-33.
    [82] Long J,Xie X,Xu J,et al.Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols[J].ACS Catal,2012,2(4):622-631.
    [83] Wang Y,Shao Y,Matson D W,et al.Nitrogen-doped graphene and its application in electrochemical biosensing[J].ACS Nano,2010,4(4):1790-1798.
    [84] Krishnan R,Wu S Y,Chen H T.Catalytic CO oxidation on B-doped and BN co-doped penta-graphene:A computational study[J].Phys Chem Chem Phys,2018,20(41):26414-26421.
    [85] Dai B,Chen K,Wang Y,et al.Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination[J].ACS Catal,2015,5(4):2541-2547.
    [86] Liu F,Jing S,Zhu L,et al.Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions[J].J Mater Chem,2012,22(12):5495-5502.
    [87] Lam E,Chong J H,Majid E,et al.Carbocatalytic dehydration of xylose to furfural in water[J].Carbon,2012,50(3):1033-1043.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700