植物反转录转座子功能研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functional progress of retrotransposons in plants
  • 作者:林悦龙 ; 肖开转 ; 连玲 ; 何炜 ; 陈丽萍 ; 蔡秋华 ; 王颖姮 ; 谢华安 ; 张建福
  • 英文作者:Yuelong Lin;Kaizhuan Xiao;Ling Lian;Wei He;Liping Chen;Qiuhua Cai;Yingheng Wang;Hua'an Xie;Jianfu Zhang;Rice Research Institute, Fujian Academy of Agricultural Sciences;Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture, China/Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences & Technology/National Rice Engineering Laboratory of China/Base of South-China, National Key Laboratory of Hybrid Rice/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding;State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Academy of Agricultural Sciences;
  • 关键词:反转座子 ; smRNA ; lncRNA ; 反转座基因 ; 嵌合基因 ; 胁迫 ; 反转录病毒
  • 英文关键词:retrotransposon;;smRNA;;lncRNA;;retrogene;;stress;;retrovirus
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:福建省农业科学院水稻研究所;农业部华南杂交水稻种质创新与分子育种重点实验室/福建省作物种质创新与分子育种省部共建国家重点实验室培育基地/水稻国家工程实验室/杂交水稻国家重点实验室华南研究基地/福州(国家)水稻改良分中心/福建省作物分子育种工程实验室/福建省水稻分子育种重点实验室;闽台作物有害生物生态防控国家重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家重点研发计划(2016YFD0101801);; 福建省科技计划——省属公益类科研院所基本科研专项(2018R1101013-4);; 福建省农业科学院创新团队项目(STIT17-1-1)资助
  • 语种:中文;
  • 页:KXTB201901006
  • 页数:14
  • CN:01
  • ISSN:11-1784/N
  • 分类号:41-54
摘要
反转录转座子(retrotransposon),是一类以RNA为中介,在反转录酶的参与下,进行自我复制并整合到基因组其他位点中的转座元件(transposableelements,TEs).反转录转座子是许多真核生物基因组的主要组成部分,在高等植物如玉米、小麦等作物中含量丰富.这些反转座子的功能及生物学意义一直以来都存在争议,但越来越多研究表明,它们对于邻近基因的表达调控以及整个生物体基因组的进化有着深远的影响.本文主要从反转座子与非编码RNA的联系及其转座过程所产生的基因结构变异、反转座基因等方面,概述了植物中反转座子功能的相关研究进展.
        Retrotransposon is a type of transposable elements(TEs), which can replicate itself and move to other loci through the form of DNA→RNA→DNA intermediated with RNA in the genome, and belongs to the class I type transposon. Basically, retrotransposons can be divided into two mainly categories including LTR(long terminal repeat) and nonLTR(non-long terminal repeat). The LTR retrotransposon can be furtherly divided into two main groups including Ty1/copia and Ty3/gypsy, which have a long terminal repeat structure similar to the retrovirus genome. The LTR usually do not encode proteins, but it can serve as regulator for transcription and termination and so on. Non-LTR retrotransposon includes the LINE(Long interspersed nuclear elements) and SINE(Short interspersed nuclear elements). The SINE retrotransposons do not encode the enzymes required for transposition and cannot complete the retrotransposition autonomously. Retrotransposons are the main components in the genome of most eukaryotic, which are also abundant in higher plants. For example, they account for more than 60 percent of the genome sequence in tomatoes, while nearly 80 percent of the genome sequence is made up of retrotransposons in corn and wheat. As early as 1950 s, the famous American geneticist, Barbara McClintock, had discovered the existence of transposon when studying the variation of color spots in corn kernels. However, the function and biological significance of those transposons including retrotransposons have always been controversial. But more and more researches reveal that the retrotransposons play an important role in the regulation of gene expression and evolution of plant genome in recent years. Some activated transcript of retrotransposons can participate the production of non-coding RNAs, such as small RNAs or LncRNAs, and rely on the targeting effect of these non-coding RNAs, and are further involved in the expression regulation of downstream-related genes. The transposition of retrotransposons always influences gene structure and expression of insertion loci and neighborhood. They can act as cis-or trans-acting elements in the upstream or downstream regions of genes, or directly as promoter and terminator and so on to regulate the expression, transcription and function of target genes. Besides, the enzyme system produced by autonomous retrotransposon may also act on the other genes of genome, which may result in the creation of chimeric genes or production of new gene copy. Furthermore, some retrotransposon sequences may have involved in the generation of new functional genes during the long-term evolution of plants. Obviously, they are of great significance to the plants. Moreover, retrotransposon may play a role in physiological changes and stress responses of plants, for instance, the plant growth and development regulation, disease resistance and stress-related response and so on. They can even reprogramming plant cell gene expression or creating a considerable number of natural ecotype variations. Intriguingly, the subtle relationship in the origin and evolution of retrotransposons and retroviruses deserves further exploration. They have too much in common and similarities, which indicate that they must have some evolutionary connections. From the study of retrotransposon, we may obtain some unknown secrets about mammalian retrovirus. In this paper, the function progress of the retrotransposon in plants are briefly summarized from the above aspects, which may lay a good theoretical foundation for further revealing the function and mechanism of retrotransposon in the genome and incite the enthusiasm of researchers to study these elements.
引文
1 Mcclintock B.The origin and behavior of mutable loci in maize.Proc Natl Acad Sci USA,1950,36:344-345
    2 Bainton R,Gamas P,Craig N L.Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA.Cell,1991,65:805-816
    3 Jr K H,Scott A F.‘Copy and paste’transposable elements in the human genome.J Clin Invest,1993,91:1859-1860
    4 Wessler S R.Plant transposable elements:Where genetics meets genomics.Nat Rev Genet,2002,3:329-341
    5 Schulman A H.Retrotransposon replication in plants.Curr Opin Virol,2013,3:604-614
    6 Kalendar R,Vicient C M,Peleg O,et al.Large retrotransposon derivatives:Abundant,conserved but nonautonomous retroelements of barley and related genomes.Genetics,2004,166:1437-1450
    7 Witte C P,Le Q H,Bureau T,et al.Terminal-repeat retrotransposons in miniature(TRIM)are involved in restructuring plant genomes.Proc Natl Acad Sci USA,2001,98:13778-13783
    8 Chen Z W,Wu W R.The plant retrotransposon and application(in Chinese).Hereditas(Beijing),2004,26:122-126[陈志伟,吴为人.植物中的反转录转座子及其应用.遗传,2004,26:122-126]
    9 Goodier J L.Restricting retrotransposons:A review.Mobile DNA,2016,7:16
    10 Vassetzky N S,Kramerov D A.SINEBase:A database and tool for SINE analysis.Nucleic Acids Res,2013,41:D83-D89
    11 Consortium T G.The tomato genome sequence provides insights into fleshy fruit evolution.Nature,2012,485:635-641
    12 Brenchley R,Spannagl M,Pfeifer M,et al.Analysis of the bread wheat genome using whole-genome shotgun sequencing.Nature,2012,491:705-710
    13 Schnable P S,Ware D,Fulton R S,et al.The B73 maize genome:Complexity,diversity,and dynamics.Science,2009,326:1112-1115
    14 Li Y,Li C,Xia J,et al.Domestication of transposable elements into microRNA genes in plants.PLoS One,2011,6:e19212
    15 Carthew R W,Sontheimer E J.Origins and mechanisms of miRNAs and siRNAs.Cell,2009,136:642-655
    16 Mccue A D,Nuthikattu S,Reeder S H,et al.Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA.PLoS Genet,2013,8:e1002474
    17 Mccue A D,Slotkin R K.Transposable element small RNAs as regulators of gene expression.Trends Genet,2012,28:616-623
    18 Chau N C,Kentaro N,Akihiro M,et al.Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance.Front Plant Sci,2016,7:853-861
    19 Creasey K M,Zhai J,Borges F,et al.miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.Nature,2014,508:411-415
    20 Zhang X.Dynamic differential methylation facilitates pathogen stress response in Arabidopsis.Proc Natl Acad Sci USA,2012,109:12842-12843
    21 Hsieh L C,Lin S,Shih C C,et al.Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.Plant Physiol,2010,151:2120-2132
    22 Yuan J,Ye Z,Dong J,et al.Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana.BMC Genomics,2016,17:655
    23 Csorba T,Questa J I,Sun Q,et al.Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization.Proc Natl Acad Sci USA,2014,111:16160-16165
    24 Ding J,Lu Q,Ouyang Y,et al.A long noncoding RNA regulates photoperiod-sensitive male sterility,an essential component of hybrid rice.Proc Natl Acad Sci USA,2012,109:2654-2659
    25 Wang X,Ai G,Zhang C,et al.Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato.New Phytol,2016,209:1442-1455
    26 Rory Johnson R G.The RIDL hypothesis:Transposable elements as functional domains of long noncoding RNAs.RNA,2014,20:959-976
    27 White S E,Habera L F,Wessler S R.Retrotransposons in the flanking regions of normal plant genes:A role for copia-like elements in the evolution of gene structure and expression.Proc Natl Acad Sci USA,1994,91:11792-11796
    28 Kashkush K,Feldman M,Levy A A.Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat.Nature Genet,2003,33:102-106
    29 Hammond S M,Caudy A A,Hannon G J.Post-transcriptional gene silencing by double-stranded RNA.Nat Rev Genet,2001,2:110-119
    30 Francozorrilla J M,Valli A,Todesco M,et al.Target mimicry provides a new mechanism for regulation of microRNA activity.Nat Genet,2007,39:1033-1037
    31 Kobayashi S,Gotoyamamoto N,Hirochika H.Retrotransposon-induced mutations in grape skin color.Science,2004,304:982-982
    32 Lisch D.How important are transposons for plant evolution?Nat Rev Genet,2013,14:49-61
    33 Masukawa T,Cheon K S,Mizuta D,et al.Insertion of a retrotransposon into a flavonoid 3′-hydroxylase homolog confers the red root character in the Radish(Raphanus sativus L.var.longipinnatus LH Bailey).Hort J,2018,87:89-96
    34 Bhattacharyya M K,Smith A M,Ellis T H N,et al.The wrinkled-seed character of pea described by Mendel is caused by a transposonlike insertion in a gene encoding starch-branching enzyme.Cell,1990,60:115-122
    35 Zhao H J,Cui H R,Xu X H,et al.Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon.Theor Appl Genet,2013,126:3009-3020
    36 Li X,Qian Q,Fu Z,et al.Control of tillering in rice.Nature,2003,422:618-621
    37 Wu X,Tang D,Li M,et al.Loose Plant Architecture 1,an INDETERMINATE domain protein involved in shoot gravitropism,regulates plant architecture in rice.Plant Physiol,2012,161:317-329
    38 Wang G L,Ruan D L,Song W Y,et al.Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution.Plant Cell,1998,10:765-779
    39 Wessler S R,Varagona M J.Molecular basis of mutations at the waxy locus of maize:Correlation with the fine structure genetic map.Proc Natl Acad Sci USA,1985,82:4177-4181
    40 Pereira A,Schwarz‐Sommer Z,Gierl A,et al.Genetic and molecular analysis of the Enhancer(En)transposable element system of Zea mays.EMBO J,1985,4:17-23
    41 Shure M,Wessler S,Fedoroff N.Molecular identification and isolation of the Waxy locus in maize.Cell,1983,35:225-233
    42 Varagona M J,Purugganan M,Wessler S R.Alternative splicing induced by insertion of retrotransposons into the maize waxy gene.Plant Cell,1992,4:811-820
    43 Hayashi K,Yoshida H.Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter.Plant J,2009,57:413-425
    44 Cohen C J,Lock W M,Mager D L.Endogenous retroviral LTRs as promoters for human genes:A critical assessment.Gene,2009,448:105-114
    45 Butelli E,Licciardello C,Zhang Y,et al.Retrotransposons control fruit-specific,cold-dependent accumulation of anthocyanins in blood oranges.Plant Cell,2012,24:1242-1255
    46 BRosIus J.Retroposons-Seeds of evolution.Science,1991,251:753
    47 Betrán E,Thornton K,Long M.Retroposed new genes out of the X in Drosophila.Genome Res,2002,12:1854-1859
    48 Long M,Langley C H.Natural selection and the origin of jingwei,a chimeric processed functional gene in Drosophila.Science,1993,260:91-95
    49 Wang W,Brunet F G,Nevo E,et al.Origin of sphinx,a young chimeric RNA gene in Drosophila melanogaster.Proc Natl Acad Sci USA,2002,99:4448-4453
    50 Wang W,Yu H,Long M.Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species.Nature Genet,2004,36:523-527
    51 Wang W,Zheng H,Fan C,et al.High rate of chimeric gene origination by retroposition in plant genomes.Plant Cell,2006,18:1791-1802
    52 Xiao H,Jiang N,Schaffner E,et al.A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit.Science,2008,319:1527-1530
    53 Arkhipova I R,Pyatkov K I,Meselson M,et al.Retroelements containing introns in diverse invertebrate taxa.Nature Genet,2003,33:123-124
    54 Volff J N.Turning junk into gold:Domestication of transposable elements and the creation of new genes in eukaryotes.Bioessays,2006,28:913-922
    55 Nekrutenko A,Li W H.Transposable elements are found in a large number of human protein-coding genes.Trends Genet,2001,17:619-621
    56 Jiang N,Bao Z,Zhang X,et al.Pack-MULE transposable elements mediate gene evolution in plants.Nature,2004,431:569-573
    57 Elrouby N,Bureau T E.Bs1,a new chimeric gene formed by retrotransposon-mediated exon shuffling in maize.Plant Physiol,2010,153:1413-1424
    58 Bureau T E,White S E,Wessler S R.Transduction of a cellular gene by a plant retroelement.Cell,1994,77:479-480
    59 Elrouby N,Bureau T E.A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement.J Biol Chem,2001,276:41963-41968
    60 Duan K,Ding X,Zhang Q,et al.AtCopeg1,the unique gene originated from AtCopia95 retrotransposon family,is sensitive to external hormones and abiotic stresses.Plant Cell Rep,2008,27:1065-1073
    61 Hirochika H,Okamoto H,Kakutani T.Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation.Plant Cell,2000,12:357-368
    62 Tsukahara S,Kobayashi A,Kawabe A,et al.Bursts of retrotransposition reproduced in Arabidopsis.Nature,2009,461:423-426
    63 Ito H,Gaubert H,Bucher E,et al.An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress.Nature,2011,472:115-119
    64 Lippman Z,May B,Yordan C,et al.Distinct mechanisms determine transposon inheritance and methylation via small interfering RNAand histone modification.PLoS Biol,2003,1:67
    65 Grandbastien M A.Activation of plant retrotransposons under stress conditions.Trends Plant Sci,1998,3:181-189
    66 Grandbastien M A.LTR retrotransposons,handy hitchhikers of plant regulation and stress response.Biochim Biophys Acta,2015,1849:403-416
    67 Pouteau S,Huttner E,Grandbastien M A,et al.Specific expression of the tobacco Tnt1 retrotransposon in protoplasts.EMBO J,1991,10:1911-1918
    68 Pouteau S,Grandbastien M A,Boccara M.Microbial elicitors of plant defence responses activate transcription of a retrotransposon.Plant J,2010,5:535-542
    69 Mhiri C,Morel J B,Vernhettes S,et al.The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress.Plant Mol Biol,1997,33:257-266
    70 Grandbastien M A,Lucas H,Morel J B,et al.The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses.Genetica,100:241-252
    71 Melayah D,Bonnivard E,Chalhoub B,et al.The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors.Plant J,2010,28:159-168
    72 Grandbastien M,Audeon C,Bonnivard E,et al.Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae.Cytogenet Genome Res,2005,110:229-241
    73 J??skel?inen M,Chang W,Moisy C,et al.Retrotransposon BARE displays strong tissue-specific differences in expression.New Phytol,2013,200:1000-1008
    74 Hirochika H,Sugimoto K,Otsuki Y,et al.Retrotransposons of rice involved in mutations induced by tissue culture.Proc Natl Acad Sci USA,1996,93:7783-7788
    75 Matsunaga W,Kobayashi A,Kato A,et al.The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN,a copia-like retrotransposon in Arabidopsis thaliana.Plant Cell Physiol,2012,53:824-833
    76 Xu L,Yang J,Liu L,et al.Response of rice gypsy retrotransposons to different stress condition(in Chinese).J Hunan Agr Univ(Nat Sci),2012,38:591-596[徐玲,杨静,刘林,等.水稻gypsy类逆转座子对不同胁迫条件的响应.湖南农业大学学报(自然科学版),2012,38:591-596]
    77 Takeda S,Sugimoto K,Otsuki H,et al.A 13‐bp cis‐regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture,wounding,methyl jasmonate and fungal elicitors.Plant J,2010,18:383-393
    78 Shinozaki K,Yamaguchi-Shinozaki K,Seki M.Regulatory network of gene expression in the drought and cold stress responses.Curr Opin Plant Biol,2003,6:410-417
    79 Wu C.Heat shock transcription factors:Structure and regulation.Annu Rev Cell Dev Biol,1995,11:441-469
    80 Cavrak V V,Lettner N,Jamge S,et al.How a retrotransposon exploits the plant’s heat stress response for its activation.PLoS Genet,2014,10:e1004115
    81 Ohama N,Sato H,Shinozaki K,et al.Transcriptional regulatory network of plant heat stress response.Trends Plant Sci,2017,22:53-65
    82 Jorgensen R A.Restructuring the genome in response to adaptive challenge:McClintock’s bold conjecture revisited.Cold Spring Harb Symp Quant Biol,2004,69:349-354
    83 Arnholdt-Schmitt B.Stress-induced cell reprogramming.A role for global genome regulation?Plant Physiol,2004,136:2579-2586
    84 Flavell A J,Dunbar E,Anderson R,et al.Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants.Nucleic Acids Res,1992,20:3639-3644
    85 Walsh A M,Kortschak R D,Gardner M G,et al.Widespread horizontal transfer of retrotransposons.Proc Natl Acad Sci USA,2013,110:1012-1016
    86 Xu L,Yang J,Liu L.Stress responses of three retrotransposon-related genes in rice(in Chinese).Acta Phytopathol Sin,2014,44:147-155[徐玲,杨静,刘林,等.三个水稻逆转座子相关基因的逆境响应特征.植物病理学报,2014,44:147-155]
    87 Sha A H,Zhang D P.Relations hip of activation of Tos17 and rice adult plant resistance to bacterial blight(in Chinese).Hereditas(Beijing),2005,27:181-184[沙爱华,张端品.逆转座子Tos17的激活与水稻白叶枯病成株抗性的关系.遗传,2005,27:181-184]
    88 Skibbe D S,Fernandes J F,Medzihradszky K F,et al.Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers.Plant J,2009,59:622-633
    89 Faulkner G J,Kimura Y,Daub C O,et al.The regulated retrotransposon transcriptome of mammalian cells.Nature Genet,2009,41:563-571
    90 Jordan I K,Rogozin I B,Glazko G V,et al.Origin of a substantial fraction of human regulatory sequences from transposable elements.Trends Genet,2003,19:68-72
    91 Feschotte C.Transposable elements and the evolution of regulatory networks.Nature Rev Genet,2008,9:397-405
    92 Elbarbary R A,Lucas B A,Maquat L E.Retrotransposons as regulators of gene expression.Science,2016,351:aac7247
    93 Laten H M,Majumdar A,Gaucher E A.SIRE-1,a copia/Ty1-like retroelement from soybean,encodes a retroviral envelope-like protein.Proc Natl Acad Sci USA,1998,95:6897-690
    94 Wright D A,Voytas D F.Potential retroviruses in plants:Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.Genetics,1998,149:703-715
    95 Zaki E A.Plant retroviruses:Structure,evolution and future applications.Afr J Biotechnol,2003,2:136-139
    96 Garfinkel D J,Tucker J M,Saha A,et al.A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces.Curr Genet,2016,62:321-329
    97 Laten H M,Gaston G D.Plant endogenous retroviruses?A case of mysterious ORFs.Plant Transposable Elements.Berlin,Heidelberg:Springer 2012.89-112
    98 Marco A,Marín I.Retrovirus-like elements in plants.Recent Res Devel Plant Sci,2005,3:15-24
    99 Kim A,Terzian C,Santamaria P,et al.Retroviruses in invertebrates:The gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster.Proc Natl Acad Sci USA,1994,91:1285-1289
    100 Havecker E R,Gao X,Voytas D F.The diversity of LTR retrotransposons.Genome Biol,2004,5:225
    101 Subramanian R P,Wildschutte J H,Russo C,et al.Identification,characterization,and comparative genomic distribution of the HERV-K(HML-2)group of human endogenous retroviruses.Retrovirology,2011,8:90
    102 Frendo J L,Olivier D,Cheynet V,et al.Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation.Mol Cell Biol,2003,23:3566-3574
    103 Ponferrada V G,Mauck B S,Wooley D P.The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus.Arch Virol,2003,148:659-675
    104 Leroux C,Girard N,Cottin V,et al.Jaagsiekte sheep retrovirus(JSRV):From virus to lung cancer in sheep.Vet Res,2007,38:211-228
    105 Spencer T E,Mura M,Gray C A,et al.Receptor usage and fetal expression of ovine endogenous betaretroviruses:Implications for coevolution of endogenous and exogenous retroviruses.J Virol,2003,77:749-753
    106 Eickbush T H,Malik H S.Origins and Evolution of Retrotransposons.Mobile DNA II.Washington:ASM Press,2002.1111-1144
    107 Comfort N.When your sources talk back:Toward a multimodal approach to scientific biography.J Hist Biol,2011,44:651-669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700