选择性激光烧结的温度场三维有限元模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional finite element simulation of temperature field of selective laser sintering
  • 作者:孟娟 ; 严波 ; 吴国洪 ; 梅琼风
  • 英文作者:MENG Juan;YAN Bo;WU Guo-hong;MEI Qiong-feng;
  • 关键词:选择性激光烧结 ; 温度场 ; 数值模拟 ; GGLS法 ; 高斯点 ; 热流密度
  • 英文关键词:selective laser sintering;;temperature field;;numerical simulation;;GGLS method;;Gaussian point;;heat flux
  • 中文刊名:MJJS
  • 英文刊名:Die and Mould Technology
  • 机构:上海交通大学材料科学与工程学院;东莞市横沥模具科技产业发展有限公司;
  • 出版日期:2019-03-25
  • 出版单位:模具技术
  • 年:2019
  • 期:No.218
  • 基金:国家重点研发计划(2018YFB1106700);; 国家自然科学基金项目(51005151)
  • 语种:中文;
  • 页:MJJS201902001
  • 页数:6
  • CN:02
  • ISSN:31-1297/TG
  • 分类号:5-10
摘要
选择性激光烧结(SLS)是一种重要的塑料粉末增材制造工艺,模拟SLS的温度场有助于优化SLS工艺。通过建立SLS的温度场模型并开发了C++的有限元模拟软件,模拟了SLS的温度场。研究表明:由于塑料材料的热扩散系数较小,采用GGLS(Galerkin gradient least-squares)法能避免传统的有限元法模拟温度场时出现的数值震荡问题;在高斯积分点计算激光热源的热流密度作为温度场边界条件,比在单元中心计算热流密度更加合理,并且没有增加温度场边界条件的计算量;网格密度的差异对SLS的温度场影响较大,在考虑计算量的前提下,应该适度减小单元网格尺寸。
        Selective laser sintering(SLS) is an important additive manufacturing process of plastic powder. Temperature simulation of SLS helps to optimize the SLS process. A temperature field model for SLS was established and then a software using C++ was developed to simulate the temperature distribution based on finite element frame. Numerical examples showed that the GGLS(Galerkin gradient least-squares) method can avoid the numerical oscillation when the traditional finite element method was employed. The heat flux of laser power was calculated at the Gaussian points as the boundary condition of temperature simulation which was more reasonable than to calculate the heat flux at the center of finite element surface. In addition, the time of calculation was less. Because the difference in mesh density has a great influence on the temperature field of SLS, the mesh unit size should be moderately reduced considering time consumption of numerical simulation.
引文
[1] 黄战川,乔自平. 激光快速成形技术与模具制造[J].模具技术,2010(5):60-63.
    [2] 阮百强. 压铸模具产品FDM快速成型工艺设计[J].模具技术,2013(1):40-43.
    [3] 项建云,葛茂忠. 基于SolidWorks、RP和RT技术的模具设计与制造[J].模具技术,2007(4):7-10.
    [4] BAI P, CHENG J, LIU B, et al. Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder[J].Transactions of Nonferrous Metals Society of China, 2006,16(s1): 603-607.
    [5] 赵保军,施法中,冯涛,等. 选择性激光烧结聚苯乙烯粉末成形温度场的数值模拟研究[J]. 激光杂志, 2002(2): 66-69.
    [6] 吴晓勇. 基于选择性激光烧结的聚苯乙烯成型工艺研究[D].成都:电子科技大学,2018.
    [7] 武帅. PA6粉末选区激光烧结应力和力学性能的研究[D].合肥:中国科学技术大学,2015.
    [8] 赵岩. 陶瓷粉末选择性激光烧结瞬态模拟[J].热加工工艺,2017,46(4):177-180,183.
    [9] SHUAI C J, FENG P, GAO C D, et al. Simulation of dynamic temperature field during selective laser sintering of ceramic powder[J]. Mathematical Modelling of Systems, 2013, 19(1):1-11.
    [10] XING J, SUN W, RANA R S. 3D modeling and testing of transient temperature in selective laser sintering (SLS) process[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(4):301-304.
    [11] FRANCA L P,CARMO E G D D. The Galerkin gradient least-squares method[J]. Computer Me-thods in Applied Mechanics & Engineering, 1989, 74(1):41-54.
    [12] 李阳, 严波, 赵朋, 等. GLS/GGLS/SUPG在三维注射成形充填模拟中的应用[J]. 化工学报, 2010, 61(2):510-515.
    [13] 薛忠明, 顾兰, 张彦华. 激光焊接温度场数值模拟[J].焊接学报, 2003, 24(2):79-82.
    [14] 董克权, 张建. 一种高斯热源加载算法[J].焊管, 2007(3):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700