单通道客机气动标模CHN-T1设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aerodynamic design of a standard model CHN-T1for single-aisle passenger aircraft
  • 作者:余永刚 ; 周铸 ; 黄江涛 ; 牟斌 ; 黄勇 ; 王运涛
  • 英文作者:YU Yonggang;ZHOU Zhu;HUANG Jiangtao;MOU Bin;HUANG Yong;WANG Yuntao;China Aerodynamics Research and Development Center;
  • 关键词:标模 ; CHN-T1 ; 窄体 ; 超临界机翼 ; 气动外形设计
  • 英文关键词:standard model;;CHN-T1;;single-aisle body;;supercritical wing;;aerodynamic design
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:中国空气动力研究与发展中心;
  • 出版日期:2018-06-15
  • 出版单位:空气动力学学报
  • 年:2018
  • 期:v.36;No.170
  • 基金:国家重点研发计划(2016YFB0200700);; “十三五”试验技术项目(1600120081)
  • 语种:中文;
  • 页:KQDX201803015
  • 页数:9
  • CN:03
  • ISSN:51-1192/TK
  • 分类号:149-157
摘要
发展单通道客机标模,特别是针对国内客机研制的标模,一方面利于确认CFD软件计算的可信度,从而促进CFD软件能力提升,为客机气动外形设计提供可靠的分析工具;另一方面有利于确认风洞试验品质,校对测量仪器,改良干扰修正方法,研发先进测量技术。本文介绍了用于确认风洞试验和CFD可信度的标模CHN-T1的气动外形设计。该标模包含机身、机翼、平尾、立尾、短舱、吊挂等部件。对机翼开展了详细优化设计,并配置单通道的窄体机身、满足稳定控制需求的平尾和立尾、翼下吊挂的通气模型短舱,组成全机干净构型,具有现代单通道客机的典型几何外形特征。标模设计马赫数为0.78,设计升力系数为0.5。机翼采用高气动效率的超临界翼型,在有/无短舱/吊挂组件的影响下,机翼均展示了良好的气动性能。相关信息可为即将召开的"第一届航空CFD可信度研讨会(AeCW-1)"提供基础。
        The development of standard model for a civil single-aisle passenger aircraft is significant for the advancement of CFD simulation and wind tunnel test.Not only can it be used to validate the credibility of CFD simulation,promote the progress of CFD technology,provide a reliable tool for aerodynamic shape design,and also can it be used to validate the quality of wind tunnel test,correct measuring instruments,develop advanced measuring method,and improve calibration method for the interference from wind tunnel wall/support.The aerodynamic shape design of a standard model CHN-T1 is presented for wind tunnel test and applied CFD credibility validation,which is composed of wing,body,horizontal-tail,vertical-tail,nacelle,pylon and so forth.The wing is optimized in detail,together with a single-aisle fuselage,horizontal and vertical tails meeting the typical stability and control requirements,a flow-through nacelle installed under the wing with a pylon.Those components constitute the clean configuration,whose geometric feature is representative of a contemporary single-aisle passenger aircraft.The model is designed to fly at a cruise Mach number of Ma=0.78 with a nominal lift coefficient of CL =0.5.Supercritical airfoils are employed to develop the wing,thus good aerodynamic characteristics is achieved with and without the nacelle/pylon group.Relevant information can provide reference support for the 1 st Aeronautics CFD Credibility Workship(AeCW-1).
引文
[1]Zhang P G,Luo Y P.Primary research on the standard system of air vehicle calibration models used in wind tunnel test[J].Standard Science,2011,11:28-32.(in Chinese)战培国,罗月培.飞行器风洞试验标模体系研究初探[J].标准科学,2011,11:28-32.
    [2]Zheng Q Y,Liu S Y,Liang Y H.Numerical simulation of the flow fields around the DLR-F4 wing-body configuration[J].Journal of Harbin Engineering University,2010,31(8):1029-1033.(in Chinese)郑秋亚,刘三阳,粱益华.DLR-F4翼身组合体流场数值模拟[J].哈尔滨工程大学学报,2010,31(8):1029-1033.
    [3]Redeker G.A selection of experimental test cases for the validation of CFD codes[R].North Atlantic Treaty Organization,AGARD-AR-303,1994.
    [4]Wang Y T,Wang G X,Zhang Y L.Drag prediction of DLR-F6configu ration with TRIP2.0software[J].Acta Aerodynamica Sinica,2009,27(1):108-113.(in Chinese)王运涛,王光学,张玉伦.采用TRIP2.0软件计算DLR-F6构型的阻力[J].空气动力学学报,2009,27(1):108-113.
    [5]Brodersen O,Sturmer A.Drag prediction of engine-airframe interference effects using unstructured Navier-Stokes calculations[C]//19th AIAA Applied Aerodynamics Conference,California.AIAA 2001-2414.
    [6]Vladmir E Makarov,Yuri P Fedorchenko,Victor A Shorstov.CIAM,Sukhoi NCT and Irkut contribution to HiLiftPW-2[C]//32nd AIAA Applied Aerodynamics Conference,Atlanta.AIAA 2014-2399.
    [7]Vassberg J C,DeHaan M A,Rivers M S,et al.Development of a common research model for applied CFD validation studies[C]//AIAA Applied Aerodynamics Conference,Honolulu.AIAA 2008-6919.
    [8]Hartwich P M,Dickey E D,et al.AFC-enabled simplified highlift system integration study[R].Langley Research Center,NASA CR-2014-218 521.
    [9]Zhao Z,He X,Zhang L P,et al.Numerical research of NASA high-lift TrapWing model based on HyperFLOW[J].Acta Aerodynamica Sinica,2015,33(5):594-602.(in Chinese)赵钟,赫新,张来平,等.HyperFLOW软件数值模拟TrapWing高升力外形[J].空气动力学学报,2015,33(5):594-602.
    [10]6th AIAA CFD drag prediction workshop.https://aiaa-dpw.larc.nasa.gov/
    [11]3rd AIAA CFD high lift prediction workshop(HiliftPW-3).https://hilift pw.larc.nasa.gov/
    [12]Fang B R.Aircraft aerodynamic layout design[M].Beijing:Aviation Industry Press,1997:1131.(in Chinese)方宝瑞.飞机气动布局设计[M].北京:航空工业出版社,1997:1131.
    [13]Zhu X X,et al.Free curve and surface modeling technique[M].Beijing:Science Press,2000:239-247.(in Chinese)朱心雄,等.自由曲线曲面造型技术[M].北京:科学出版社,2000:239-247.
    [14]Li C G,Cai Q,Zhang B F,et al.Free-form defor-mation in aircraft geometry modeling[J].Journal of Northwestern Polytechnical University,1998,16(2):226-231.(in Chinese)李纯刚,蔡青,张博锋,等.飞机曲面造型中的自由变形方法[J].西北工业大学学报,1998,16(2):226-231.
    [15]Wang G,Lei B Q,Ye Z Y.An efficient deformation technique for hybrid unstructured grid using radial basis functions[J].Journal of Northwestern Polytechnical University,2011,29(5):783-788.(in Chinese)王刚,雷博琪,叶正寅.一种基于径向基函数的非结构混合网格变形技术[J].西北工业大学学报,2011,29(5):783-788.
    [16]Zhang M,Liu T J,Ma T L,et al.High speed aerodynamic design of large civil transporter based on CFD method[J].Acta Aeronautica et Astronautica Sinica,2016,37(1):244-254.(in Chinese)张淼,刘铁军,马涂亮,等.基于CFD方法的大型客机高速气动设计[J].航空学报,2016,37(1):244-254.
    [17]Mou Bin.Research on numerical simulation technology of flow control[D].Mianyang:China Aerodynamics Research and Development Center,2006.(in Chinese)牟斌.流动控制数值模拟研究[D].绵阳:中国空气动力研究与发展中心,2006.
    [18]Zhang X J.Aircraft design manual-Aerodynamic design[M].Beijing:Aviation Industry Press,2002:261.(in Chinese)张锡金.飞机设计手册-气动设计[M].北京:航空工业出版社,2002:261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700