龙门山断层脆-塑性转化带流变结构与汶川地震孕震机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE RHEOLOGICAL STRUCTURES OF BRITTLE-PLASTIC TRANSITION IN LONGMENSHAN FAULT ZONE AND SEISMOGENIC MECHANISM OF WENCHUAN EARTHQUAKE
  • 作者:周永胜 ; 韩亮 ; 靖晨 ; 何昌荣 ; 党嘉祥
  • 英文作者:ZHOU Yong-sheng;HAN Liang;JING Chen;HE Chang-rong;DANG Jia-xiang;State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration;State Key Laboratory for Continental Tectonics and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences;
  • 关键词:汶川地震 ; 脆-塑性转化带 ; 流变结构 ; 高压流体
  • 英文关键词:Wenchuan earthquake,brittle-plastic transition,rheological structures,high fluid pressure
  • 中文刊名:DZDZ
  • 英文刊名:Seismology and Geology
  • 机构:中国地震局地质研究所,地震动力学国家重点实验室;中国地质科学院地质研究所,大陆构造与动力学国家重点实验室;
  • 出版日期:2014-09-15
  • 出版单位:地震地质
  • 年:2014
  • 期:v.36
  • 基金:国家自然科学基金(40972146);; 地震动力学国家重点实验室自主课题(LED2009A01)共同资助
  • 语种:中文;
  • 页:DZDZ201403026
  • 页数:14
  • CN:03
  • ISSN:11-2192/P
  • 分类号:341-354
摘要
汶川地震发震断层为高角度逆断层,这种断层滑动和发生强震需要断层深部具备特殊的力学条件。发震断层地区地表出露若干韧性剪切带,其中不同类型石英变形具有不同的变形温度。细粒糜棱岩中的石英表现为高温位错蠕变,变形温度为500~700℃;含残斑初糜棱岩中的石英表现为中温位错蠕变,其变形温度为400~500℃;早期石英脉中的石英表现为低温位错蠕变,变形温度为280~400℃;晚期石英脉以碎裂变形为主,其变形温度为150~250℃。石英的这些变形特征显示出断层带经历了多期脆-塑性转化。根据糜棱岩中的重结晶石英的粒度估计的断层塑性流动应力为15~80MPa。石英和长石内的微量水以晶体缺陷水、颗粒边界水和流体包裹体水的形式存在,水含量随岩石的应变增加而升高,变化范围为0.01~0.15wt%。断层脆-塑性转化带内石英含有大量与裂隙愈合相关的次生流体包裹体,其捕获温度为330~350℃,流体压力为70~405MPa,估计的流体压力系数为0.16~0.9,代表强震发生后,断层带内产生的大量微裂隙逐渐愈合过程中的流体特征。在考虑断层带流体压力和应变速率变化条件下,利用石英流变参数建立了从间震期到地震成核阶段断层脆-塑性转化带流变结构和震后快速蠕滑阶段断层脆-塑性转化带流变结构。结果表明,在间震期、地震成核阶段、震后快速滑动阶段,断层强度和脆-塑性转化深度随应变速率和流体压力变化而变化,且脆-塑性转化特征与石英的变形机制、断层速度弱化和强化转化深度、汶川地震震源深度等吻合,显示映秀-北川断层具备摩擦滑动速度弱化和地震成核的基础,而断层带内存在高压流体可能是触发高角度逆断层滑动和汶川地震发生的主要机制。
        The seismogenic fault of Wenchuan earthquake is a high-angle reverse-slip fault. It is necessary for the sliding of such a high-angle reverse fault and the triggering of the Wenchuan earthquake on it to have special mechanical conditions at the deep part of fault. In this study,we investigated the deformation mechanism of cataclastic-mylonite rocks in ductile shear zones found in the YingxiuBeichuan Fault. The deformation temperature and the flow stress of brittle-plastic transition of fault were estimated by the deformation fabrics of quartz. The water contents and the distribution of major minerals in mylonite were measured using Fourier transform infrared spectroscopy( FTIR). The fluid inclusions were measured using Raman and microprobe. The rehological structures of brittle-plastic transition of the Longmenshan Fault zone under different fluid pressure and strain rate conditions were constructed to discuss the role of the high fluid pressure in the seismogenic and occurrence mechanics of Wenchuan earthquake.The studies showed that inhomogeneous ductile deformation occurred in the brittle-plastic transition of the Yingxiu-Beichuan Fault. The complex deformation characters of quartz display different deformation temperatures in the ductile shear zone. The quartz in fine-grained mylonite was deformed by the grain boundary migration and recrystallization,implying the deformation temperature is from 500 to 700℃. The quartz in porphyroclastic mylonite was deformed by the subgrain rotation and recrystallization,implying the deformation temperature is from 400 to 500℃. The earlier quartz veins and healed cracks were deformed by the bulges and recrystallization,implying the deformation temperature is from 280 to 400℃. The later quartz veins which cut the earlier quartz veins were deformed by the cataclastics,indicating the deformation temperature is from 150 to 250℃. The deformation of quartz shows that the ductile shear zone experienced multi-phase brittle-ductile transitions. Based on the grain size of recrystallized quartz,the ductile flow stress of the fault is estimated to be 15 ~ 80 MPa. The trace amount water in quartz and feldspar exists in the forms of hydroxyl in crystals,grain boundaries water and fluid inclusions water,and the water contents are higher with increasing strain of rocks,with a changing range from 0. 01wt% to 0. 15wt%. A lot of secondary fluid inclusions were found in the quartz in the brittle-plastic transition of fault,which were captured during crack healing. Based on measurement of the fluid inclusions,the capture temperature of the fluid inclusions is from 330 to 350℃,and fluid pressure is about 70 ~ 405 MPa,the corresponding fluid pressure coefficient is estimated to be from 0. 16 to 0. 9,which stands for the characters of fluid inclusions captured during cracks healing process related with co-seismic and postseismic slip of fault.Rheological structure was constructed based on the analysis data and flow law of wet quartz,as well as variation of fluid pressure and strain rate during periods of inter-seismic to earthquake nucleation,and after-slip to post seismic. Rheological structure shows that the strength of fault and depth of brittle-plastic transition change with strain rate and fluid pressure during inter seismic,earthquake nucleation,and after-slip period,and the depth of brittle-plastic transition is fit to the deformation mechanism of quartz,and the depth of transition of velocity weakening to strengthening of fault slip,as well as the focal depth of Wenchuan earthquake,which display that the YingxiuBeichuan Fault has the probability of weakening of sliding velocity and qualification of earthquake nucleation. However,the existing high fluid pressure in fault could be the most important factor for the high-angle reverse fault slip and triggering the Wenchuan earthquake.
引文
陈九辉,刘启元,李顺成,等.2009.汶川MS8.0地震余震序列重新定位及其地震构造研究[J].地球物理学报,52(2):390—397.CHEN Jiu-hui,LIU Qi-yuan,LI Shun-cheng,et al.2009.Seismotectonic study by relocation of the Wenchuan MS8.0earthquake sequence[J].Chinese Journal of Geophysics,52(2):390—397(in Chinese).
    韩亮.2012.龙门山断裂脆-塑性转化带内花岗岩的流体特征与裂缝愈合的实验模拟研究[D]:[学位论文].北京:中国地震局地质研究所.HAN Liang.2012.Fluid characters of granite in the brittle-plastic transition zone of the Longmenshan Fault andexperimental simulation of cracks healing[D].Ph D thesis.Institute of Geology,China EarthquakeAdministration,Beijing(in Chinese).
    韩亮,周永胜,姚文明.2013.中地壳断层带内微裂隙愈合与高压流体形成条件的模拟实验研究[J].地球物理学报,56(1):91—105.HAN Liang,ZHOU Yong-sheng,YAO Wen-ming.2013.A simulating experimental study on crack healing and theformation of high pore fluid pressure in faults of middle crust[J].Chinese Journal of Geophysics,56(1):91—105(in Chinese).
    靖晨,周永胜,兰彩云.2010.龙门山韧性剪切带主要矿物结构水含量与变形的关系[J].岩石学报,26(5):1604—1616.JING Chen,ZHOU Yong-sheng,LAN Cai-yun.2010.The relationship between water contents and deformation of themain minerals in ductile shear zone in Longmenshan[J].Acta Petrologica Sinica,26(5):1604—1616(inChinese).
    张培震,徐锡伟,闻学泽,等.2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,51(4):1066—1073.ZHANG Pei-zhen,XU Xi-wei,WEN Xue-ze,et al.2008.Slip rates and recurrence intervals of the Longmenshanactive fault zone and tectonic implications for the mechanism of the May 12 Wenchuan earthquake,2008,Sichuan,China[J].Chinese Journal of Geophysics,51(4):1066—1073(in Chinese).
    周永胜,何昌荣.2003.地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质,25(1):109—122.ZHOU Yong-sheng,HE Chang-rong.2003.Rheological parameter of crustal rocks and crustal rheology of North China[J].Seismology and Geology,25(1):109—122(in Chinese).
    周永胜,何昌荣.2009.汶川地震区的流变结构与发震高角度逆断层滑动的力学条件[J].地球物理学报,52(2):474—484.ZHOU Yong-sheng,HE Chang-rong.2009.The rheological structures of crust and mechanics of high angle reverse faultslip for Wenchuan MS8.0 earthquake[J].Chinese Journal of Geophysics[J].52(2):474—484(in Chinese).
    Blanpied M L,Lockner D A,Byerlee J D.1995.Frictional slip of granite at hydrothermal conditions[J].J GeophysRes,100:13045—13064.
    Bucher K,Frey M.1994.Petrogenisis of Metamorphic Rocks[M].Berlin,Heidelberg:Springer-Verlag.200—203.
    Burgmann R,Dresen G.2008.Rheology of lower crust and upper mantle:Evidence from rock mechanics,geodesy,and field observations[J].Annu Rev Earth Planet Sci,36:531—567.
    Chen J H,Froment B,Liu Q Y,et al.2010.Distribution of seismic wave speed changes associated with the 12 May2008 MW7.9 Wenchuan earthquake[J].Geophys Res Lett,37:L18302.doi:10.1029/2010GL044582.
    Flincor B P E.1989.A microcomputer program for the reduction and investigation of fluid-inclusion data[J].American Mineralogist,74:1390—1393.
    Han Liang,Zhou Yongsheng,He Changrong.2013.Water-enhanced plastic deformation in felsic rocks[J].Science inChina(Ser D),56(2):203—216.
    Hirth G,Tullis J.1992.Dislocation creep regimes in quartz aggregates[J].J Struct Geol,14:145—159.
    Kuster M,Stockhert B.1999.High differential stress and sublithostatic pore fluid pressure in the ductile regime—Microstructural evidence for shot-term post-seismic creep in the Sesia zone,Western Alps[J].Tectonophysics,303:263—277.
    Mercier J C,Anderson D A,Carter N L.1977.Stress in the lithosphere:Inferences from steady-state flow of rocks[J].Pure Appl Geophys,115:199—226.
    Rutter E H,Brodie K H.2004a.Experimental grain-size sensitive flow of hot-pressed Brazilian quartz aggregates[J].J Struc Geol,26:2011—2023.
    Rutter E H,Brodie K H.2004b.Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite preparedfrom Brazilan quartz crystals[J].J Struc Geol,26:259—270.
    Rybacki E,Dresen G.2000.Dislocation and diffusion creep of synthetic anorthite aggregates[J].J Geophys Res,105:26017—26036.
    Rybacki E,Dresen G.2004.Deformation mechanism maps for feldspar rocks[J].Tectonophysics,382(3-4):173—187.
    Schaff D P,Bokelmann G H R,Beroza G C.2002.High-resolution image of Calaveras Fault seismicity[J].J GeophysRes,107(B9):2186.doi:10.1029/2001JB000633.
    Sibson R H,Robert F,Poulsen H.1988.High-angle reverse faults,fluid-pressure cycling and mesothermal gold-quartzdeposits[J].Geology,16:551—555.
    Stipp M,Tullis J.2003.The recrystallized grain size piezometer for quartz[J].Geophys Res Lett,30(21):2088.doi:10.1029/2003GL018444.
    Stipp M,Tullis J,Behrens H.2006.Effect of water on the dislocation creep microstructure and flow stress of quartzand implications for recrystallized grain size piezometer[J].J Geophys Res,111:B04201.doi:10.1029/2005JB003852.
    Stipp M,Tullis J,Scherwath M,et al.2010.A new perspective on paleopiezometry:Dynamically recrystallized grainsize distributions indicate mechanism changes[J].Geology,38:759—762.
    Stipp M,Stunitz H,Heilbronner R,et a.2002a.Dynamic recrystallization of quartz:Correlation between natural andexperimental conditions[A].In:De Meer S et al.(eds).Deformation Mechanisms,Rheology and Tectonics:Current Status and Future Perspectives.Geol Soc Spec Publ,200:171—190.
    Stipp M,Stunitz H.2002b.The eastern Tonale Fault zone:A“natural laboratory”for crystal plastic deformation ofquartz over a temperature range from 250 to 700℃[J].J Struct Geol,24:1861—1884.
    Stockhert B,Brix M R,Kleinschrodt R,et al.1999.Thermochronometry and microstructures of quartz—A comparisonwith experimental flow laws and predictions on the temperature of the brittle-plastic transition[J].J Struct Geol,21:351—369.
    Trepmann C A,Stockhert B.2001.Mechanical twinning of jadeite-An indication of synseismic loading beneath thebrittle-ductile transition[J].International of Earth Sciences,90:4—13.
    Trepmann C A,Stockhert B.2002.Cataclastic deformation of garnet:A record of synseismic loading and postseismiccreep[J].Journal of Structural Geology,24:1845—1856.
    Trepmann C A,Stockhert B.2003.Quartz microstructures developed during non-steady state plastic flow at rapidlydecaying stress and strain rate[J].J Struc Geol,25:2035—2051.
    Trepmann C A,Stockhert B,Kuster M,et al.2007.Simulating coseismic deformation of quartz in the middle crust andfabric evolution during postseismic stress relaxation—An experimental study[J].Tectonophysics,442:83—104.
    Twiss R J.1977.Theory and applicability of a recrystallized grain size paleopiezometer[J].Pageoph,115:224—227.
    Twiss R J.1980.Theory and applications of a recrystallizd grain size paleopiezometer[J].Pure Appl Geophys,115:227—244.
    Wintsch R P,Yeh M-W.2012.Oscillating brittle and viscous behavior through the earthquake cycle in the Red Rivershear zone:Monitoring flips between reaction and textural softening and hardening[J].Tectonophysics,587:46—62.
    Xu X W,Wen X Z,Yu G H.2009.Coseismic reverse-and oblique-slip surface faulting generated by the 2008 MW7.9Wenchuan earthquake,China[J].Geology,37:515—518.
    Xu Z Q,Ji S C,Li H B,et al.2008.Uplift of the Longmenshan Range and the Wenchuan earthquake[J].Episodes,31(3):291—301.
    Yonkee W A,Parry W T,Bruhn R L.2003.Relations between progressive deformation and fluid-rock interactionduring shear-zone growth in a basement-cored thrust sheet,Sevier orogenic belt,Utah[J].Am J Sci,303:1—59.
    Zhang Pei-zhen.2013.A review on active tectonics and deep crustal processes of the western Sichuan region,easternmargin of the Tibetan plateau[J].Tectonophysics,584:7—22.
    Zhang P Z,Wen X Z,Shen Z K,et al.2010.Oblique high-angle listric-reverse faulting and associated strainingprocesses:The Wenchuan earthquake of 12 May 2008,Sichuan,China[J].Annual Review of Earth andPlanetary Sciences,38:353—382.
    Zhao Guo-ze,Unsworth M J,Zhan Yan,et al.2012.Crustal structure and rheology of the Longmenshan and WenchuanMW7.9 earthquake epicentral area from magnetotelluric data[J].Geology,40:1139—1142.doi:10.1130/G33703.1.
    Zhou Yongsheng,He Changrong,Huang Xiaoge,et al.2009.Rheological complexity of mafic rocks and the effect ofmineral component to creep of rocks[J].Earth Science Frontiers,16(1):76—87.
    Zhou Yongsheng,He Changrong Yang Xiaosong.2008.Water contents and deformation mechanism in ductile shearzone of middle crust along the Red River Fault in southwestern China[J].Sci China(Ser D),51(10):1411—1425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700