石墨烯纳机电系统及其与光纤的集成研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene Nanoelectromechanical System and Its Integration with Optical Fiber
  • 作者:刘增勇 ; 曹鸿谦 ; 徐飞 ; 陆延青
  • 英文作者:Liu Zengyong;Cao Hongqian;Xu Fei;Lu Yanqing;College of Engineering and Applied Science,Nanjing University;
  • 关键词:光纤光学 ; 石墨烯 ; 纳机电系统 ; 光纤 ; 传感
  • 英文关键词:fiber optics;;graphene;;nano-electromechanical system;;optical fiber;;sensing
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:南京大学现代工程与应用科学学院;
  • 出版日期:2019-03-08 17:05
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.646
  • 基金:科技部国家重点研发计划课题(2017YFC1403800);; 国家自然科学基金重点项目(61535005)
  • 语种:中文;
  • 页:JGDJ201911005
  • 页数:8
  • CN:11
  • ISSN:31-1690/TN
  • 分类号:46-53
摘要
石墨烯具有比表面积大、弹性模量大、刚度大和密度低等特性,是极佳的纳机电系统(NEMS)基础材料。石墨烯纳机电系统主要研究石墨烯薄膜的机电性能,其共振频率对质量、力和热具有非常灵敏的响应,在传感领域具有广泛的应用前景。光纤传感器已得到广泛应用,二者相结合能够发挥更大的优势。本文主要对石墨烯纳机电系统的工作原理、制备工艺、传感应用和基于光纤的石墨烯纳机电系统传感器进行了综述与展望。
        Graphene is an excellent base material for a nanoelectromechanical system(NEMS)because of its extraordinary characteristics,including a large specific surface area,high Young′s modulus,enormous stiffness,and low density.The graphene NEMS mainly studies the electromechanical properties of graphene films.Its resonant frequency has a very sensitive response to mass,force,and heat,which has a great application prospect in the sensing field.Meanwhile,the optical fiber sensor has been widely studied and applied,whose combination with graphene can possess a greater advantage.In this paper,the working principle,preparation process,sensing application of the graphene NEMS as well as the fiber-based graphene NEMS sensors are reviewed and prospected.
引文
[1]Bonaccorso F,Sun Z,Hasan T,et al.Graphene photonics and optoelectronics[J].Nature Photonics,2010,4(9):611-622.
    [2]Geim A K.Graphene:status and prospects[J].Science,2009,324(5934):1530-1534.
    [3]Frank I W,Tanenbaum D M,van der Zande A M,et al.Mechanical properties of suspended graphene sheets[J].Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures,2007,25(6):2558-2561.
    [4]Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.
    [5]Singh V,Shevchuk O,Blanter Y M,et al.Negative nonlinear damping of a multilayer graphene mechanical resonator[J].Physical Review B,2016,93(24):245407.
    [6]Chen C Y,Deshpande V V,Koshino M,et al.Modulation of mechanical resonance by chemical potential oscillation in graphene[J].Nature Physics,2016,12(3):240-244.
    [7]Ghahari F,Walkup D,Gutiérrez C,et al.An on/off Berry phase switch in circular graphene resonators[J].Science,2017,356(6340):845-849.
    [8]Chen C Y,Rosenblatt S,Bolotin K I,et al.Performance of monolayer graphene nanomechanical resonators with electrical readout[J].Nature Nanotechnology,2009,4(12):861-867.
    [9]Denisov A,Soto M A,Thévenaz L.Going beyond1000000 resolved points in a Brillouin distributed fiber sensor:theoretical analysis and experimental demonstration[J].Light:Science&Applications,2016,5(5):e16074.
    [10]Barrias A,Casas J,Villalba S.A review of distributed optical fiber sensors for civil engineering applications[J].Sensors,2016,16(5):748.
    [11]Ramakrishnan M,Rajan G,Semenova Y,et al.Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J].Sensors,2016,16(1):99.
    [12]Ma J,Jin W,Xuan H F,et al.Fiber-optic ferruletop nanomechanical resonator with multilayer graphene film[J].Optics Letters,2014,39(16):4769-4772.
    [13]Robinson J T,Zalalutdinov M,Baldwin J W,et al.Wafer-scale reduced graphene oxide films for nanomechanical devices[J].Nano Letters,2008,8(10):3441-3445.
    [14]Shivaraman S,Barton R A,Yu X,et al.Freestanding epitaxial graphene[J].Nano Letters,2009,9(9):3100-3105.
    [15]Song X F,Oksanen M,Sillanpaa M A,et al.Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout[J].Nano Letters,2012,12(1):198-202.
    [16]Blaikie A,Miller D,Alemán B J.A fast,sensitive,room-temperature graphene nanomechanical bolometer[EB/OL].(2018-10-31)[2018-12-25].https:∥arxiv.org/abs/1810.13422.
    [17]Garcia-Sanchez D,van der Zande A M,Paulo A S,et al.Imaging mechanical vibrations in suspended graphene sheets[J].Nano Letters,2008,8(5):1399-1403.
    [18]Bunch J S,van der Zande A M,Verbridge S S,et al.Electromechanical resonators from graphene sheets[J].Science,2007,315(5811):490-493.
    [19]Barton R A,Ilic B,van der Zande A M,et al.High,size-dependent quality factor in an array of graphene mechanical resonators[J].Nano Letters,2011,11(3):1232-1236.
    [20]van der Zande A M,Barton R A,Alden J S,et al.Large-scale arrays of single-layer graphene resonators[J].Nano Letters,2010,10(12):4869-4873.
    [21]Liu Z Y,Yan S C,Lu Z D,et al.A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles[C]∥CLEO Pacific Rim Conference,July 29-August 3,2018,Hong Kong,China.Washington D.C.:OSA,2018:W3A.76.
    [22]Bunch J S,Verbridge S S,Alden J S,et al.Impermeable atomic membranes from graphene sheets[J].Nano Letters,2008,8(8):2458-2462.
    [23]Li X,Cai W,An J,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
    [24]Kim K S,Zhao Y,Jang H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706-710.
    [25]Reserbat-Plantey A,Schdler K G,Gaudreau L,et al.Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS[J].Nature Communications,2016,7:10218.
    [26]Luo G,Zhang Z Z,Deng G W,et al.Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity[J].Nature Communications,2018,9:383.
    [27]Christopoulos T,Tsilipakos O,Grivas N,et al.Modeling nonlinear resonators comprising graphene:a coupled mode theory approach[C]∥Conference on Lasers and Electro-Optics,May 14-19,2017,San Jose,California United States.Washington D.C.:OSA,2017:FTu3H.3.
    [28]Chang W J,Lee H L.Mass detection using a doublelayer circular graphene-based nanomechanical resonator[J].Journal of Applied Physics,2014,116(3):034303.
    [29]Verbiest G J,Kirchhof J N,Sonntag J,et al.Detecting ultrasound vibrations with graphene resonators[J].Nano Letters,2018,18(8):5132-5137.
    [30]Jiang S W,Gong X H,Guo X,et al.Potential application of graphene nanomechanical resonator as pressure sensor[J].Solid State Communications,2014,193:30-33.
    [31]Singh V,Sengupta S,Solanki H S,et al.Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators[J].Nanotechnology,2010,21(16):165204.
    [32]Wang W H,Xiong Z Y,Shi W Q,et al.Fiber-optic surface plasmon resonance sensing technology[J].Laser&Optoelectronics Progress,2017,54(9):090008.王文华,熊正烨,师文庆,等.光纤表面等离子体共振传感技术[J].激光与光电子学进展,2017,54(9):090008.
    [33]Li C,Lu X Q,Yu C B,et al.Fiber-optic acoustic sensor based on multi-layered graphene material[J].Acta Optica Sinica,2018,38(3):0328017.李晨,陆雪琪,庾财斌,等.基于多层石墨烯材料的光纤声波传感器[J].光学学报,2018,38(3):0328017.
    [34]Wu Y H,Zhu S,Xu W,et al.Progress in distributed optical fiber crack sensing engineering[J].Laser&Optoelectronics Progress,2018,55(9):090002.吴永红,朱莎,许蔚,等.分布式光纤裂缝传感工程应用研究进展[J].激光与光电子学进展,2018,55(9):090002.
    [35]Tan Y Z,Zhang C Z,Jin W,et al.Optical fiber photoacoustic gas sensor with graphene nanomechanical resonator as the acoustic detector[J].IEEE Journal of Selected Topics in Quantum Electronics,2017,23(2):199-209.
    [36]Liu Z Y,Xu F.Miniature sensor based on fibergraphene-integrated NEMS[C]∥2017 16th International Conference on Optical Communications and Networks(ICOCN),August 7-10,2017,Wuzhen,China.New York:IEEE,2017:17466235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700