氢化物发生-原子荧光光谱法测定稀土矿石中的锗
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Germanium in Rare Earth Ore by Hydride Generation-atomic Fluorescence Spectrometry
  • 作者:何海洋 ; 曲少鹏 ; 黄钢 ; 方晓青 ; 董学林
  • 英文作者:HE Hai-yang;QU Shao-peng;HUANG Gang;FANG Xiao-qing;DONG Xue-lin;Hubei Province Geological Experimental Testing Center;Key Laboratory of Rare Mineral,Ministry of Land and Resources;
  • 关键词:稀土矿石 ; ; 酸溶 ; 氢化物发生 ; 原子荧光光谱法
  • 英文关键词:rare earth ore;;germanium;;acid digestion;;hydride generation;;atomic fluorescence spectrometry
  • 中文刊名:XTZZ
  • 英文刊名:Chinese Rare Earths
  • 机构:湖北省地质实验测试中心;国土资源部稀土稀有稀散矿产重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:稀土
  • 年:2019
  • 期:v.40;No.241
  • 基金:国家重点研发计划项目(2016YFF0201103)
  • 语种:中文;
  • 页:XTZZ201902015
  • 页数:7
  • CN:02
  • ISSN:15-1099/TF
  • 分类号:116-122
摘要
采用氢氟酸-硝酸-高氯酸-磷酸混合酸分解样品,以氢化物发生-原子荧光光谱法(HG-AFS)测定稀土矿石中的微量锗,在磷酸(1+4)介质下,除高含量的铜(上机浓度>50μg/mL)会对测定产生干扰外,其余共存组分不干扰锗的测定。通过土壤及水系沉积物标准物质分析验证,锗的测定值与标准值吻合,相对偏差小于10%;稀土矿石样品的加标回收率84%~116%,精密度(RSD)为4.00%~7.19%(n=11)。该方法检出限低(0.037μg/g),准确度和精密度高,适用于含铜量不高的稀土矿石样品以及一般地质样品中锗的测定。
        A fast, simple and accurate method for determination of germanium in rare earth ore by hydride generation-atomic fluorescence spectrometry(HG-AFS)was described in this paper. Rare earth ore sample could be digested with mixed acid of hydrofluoric acid, nitric acid, perchloric acid and phosphoric acid. Trace germanium in the sample solution was converted to volatile species by hydride generation in the presence of phosphoric acid, and then analyzed by AFS. The determination conditions were optimized and the potential interferences affecting the determination were investigated. The detection limit for germanium in rare earth ore was 0.037 μg/g. The validity of the method is evaluated by analyses of reference materials, the results are in good agreement with certified values(|RE| <10%). The recoveries for Ge determination in rare earth ore by this method are 84%~116%, and the precision is better than 10%(RSD, n=11). The established method has proved to be both practical and effective for germanium analysis in rare earth ore.
引文
[1] 董学林,何海洋.泡沫塑料吸附分离富集-电感耦合等离子体质谱法测定稀土矿石中的镓[J]. 岩矿测试, 2016, 35(1): 42-47.Dong X L, He H Y. Determination of gallium in rare earth ore by inductively coupled plasma-mass spectrometry using polyurethane foam pre-concentration/separation[J]. Rock and Mineral Analysis, 2016, 35(1): 42-47.
    [2] 高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J]. 岩矿测试, 2014, 33(3): 312-320.Gao H Y. Determination systems of Nb and Ta in geochemical samples and rare earth ores by ICP-MS and ICP-AES[J]. Rock and Mineral Analysis, 2014, 33(3): 312-320.
    [3] 于丽丽,汤玉和,肖飞燕,胡洁.X射线荧光光谱无标定量测定稀土矿石中五氧化二磷[J].冶金分析,2017,37(1):57-60.Yu L L, Tang Y H, Xiao F Y, Hu J. Determination of phosphorus pentoxide in rare earth ore by X-ray fluorescence spectrometry coupled with standardless quantitative analysis[J]. Metallurgical Analysis, 2017, 37(1):57-60.
    [4] 刘晓杰,李玉梅,刘丽静. 电感耦合等离子体发射光谱法测定稀土矿石中的三氧化二铝[J]. 岩矿测试, 2013, 32(3): 436-440.Liu X J, Li Y M, Liu L J. Determination of aluminum oxide in rare earth ore by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 436-440.
    [5] 张计东, 罗善霞, 焦圣兵, 李慧. 地球化学样品中微量锗的分析进展[J]. 冶金分析, 2014, 34(2): 29-35.Zhang J D, Luo S X, Jiao S B, Li H. Progress of analysis of micro germanium in geochemical samples[J]. Metallurgical Analysis, 2014, 34(2): 29-35.
    [6] 岩石矿物分析编委会. 岩石矿物分析[M]. 4版第3分册. 北京: 地质出版社, 2011. 503-519.The Editionl Committee of Rock and Mineral Analysis. Rock and Mineral Analysis[M]. Fourth Edition: Vol. III. Beijing: Geological Publishing House, 2011. 503-519.
    [7] 陈文宾,马卫兴,许兴友,徐国想.1,5-二(2-羟基-5-氯苯)-3-氰基甲月分光光度法测定微量锗[J].冶金分析,2008, 28(9):58-60.Chen W B, Ma W X, Xu X Y, Xu G X. Spectrophotometric determination of trace germanium with 1,5-di(2-hydroxy-5-chlorophenyl)-3-cyanoformazane[J]. Metallurgical Analysis, 2008, 28(9):58-60.
    [8] 崔庆雄,毛禹平. 蒸馏分离极谱法测定矿石及选冶复杂物料中的锗[J]. 云南冶金,2014, 43(1): 82-85.Cui Q X, Mao Y P. Determination of germanium in ore and processing and smelting complex material by distillation separation-polarography method[J]. Yunnan Metallurgy, 2014, 43(1): 82-85.
    [9] 李兴扬,韦小玲,龚琦. 负载苯基荧光酮纤维富集-GFAAS法测定痕量锗[J]. 应用化学,2008, 25(4): 437-440.Li X Y, Wei X L, Gong Q. Filter coated with phenyl fluorine for enrichment and determination of trace germanium by GFAAS[J]. Chinese Journal of Applied Chemistry, 2008, 25(4): 437-440.
    [10] 李刚,曹小燕.电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正[J].岩矿测试,2008,27(3):197-200.Li G, Cao X Y. Interference and its elimination in determination of germanium and cadmium in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2008,27(3):197-200.
    [11] 刘先国,方金东. 氢化物发生-原子荧光光谱法测定地质试样中的痕量锗[J]. 光谱实验室,2002,19(1):140-142.Liu X G, Fang J D. Determination of trace germanium in geochemical samples by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2002, 19(1): 140-142.
    [12] 何炼, 郝原芳. 氢化物发生原子荧光光谱法测定铜矿中的锗[J]. 山东理工大学学报(自然科学版), 2004, 18(5): 13-16.He L, Hao Y F. Method of simultaneous determination of Ge in copper mine by atomic fluorescence spectrometer[J]. Journal of Shandong University of Technology(Sci&Tech), 2004, 18(5): 13-16.
    [13] 肖灵,张培新,胡月华.原子荧光光谱法测定地质样品中的痕量锗[J].岩矿测试,2004, 23(3): 231-234.Xiao L, Zhang P X, Hu Y H. Determination of trace germanium in geological samples by hydride generation atomic fluorescence sepctrometry[J]. Rock and Mineral Analysis, 2004, 23(3): 231-234.
    [14] Li J, Zhao S L, Zhang Z H, Zeng X J. Determination of trace germanium in marine sediments by hydride generation atomic fluorescence spectrometry(HG-AFS)[J]. Journal of Ocean University of China: English Edition, 2004, 3(2): 179-182.
    [15] 董亚妮,田萍,熊英, 胡建平,牟乃仓,罗冰虹. 氢化物发生-原子荧光光谱法测定铜铅锌矿石中的微量锗[J]. 岩矿测试,2010, 29(4): 395-398.Dong Y N, Tian P, Xiong Y, Hu J P, Mou N C, Luo B H. Determination of trace germanium in copper, lead and zinc ores by hydride generation-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 395-398.
    [16] 李先,罗善霞,焦胜兵,曹永阳. 氢化物发生-原子荧光光谱法测定多金属矿中的微量锗[J]. 黄金科学技术,2014,22(1):78-80.Li X, Luo S X, Jiao S B, Cao Y Y. Determination of trace germanium in polymetallic ores by hydride generation-atomic fluorescence spectrometry[J]. Gold Science and Technology, 2014,22(1): 78-80.
    [17] 熊采华. 锗在磷酸介质中氢化物发生感耦等离子体原子发射光谱分析的应用研究[A]. 中国地质学会青年工作委员会.中国地质科学院南京地质矿产研究所文集(40)[C].中国地质学会青年工作委员会,1989.3.Xiong C H. Determination of germanium by hydride-generation atomic emission spectrometry in phosphoric acid[A]. Geological Society of China Youth Working Committee (eds.). Collection of Nanjing Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences(40) [C]. Geological Society of China Youth Working Committee, 1989.3.
    [18] 杨佳, 薛瑞, 张超. 氢化物发生-原子荧光光谱法测定铀矿石中的锗元素[J]. 中国无机分析化学, 2016, 6(2):16-19.Yang J, Xue R, Zhang C. Determination of germanium in uranium ores by hydride-generation atomic fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(2):16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700