一个三次等时中心在非光滑扰动下的极限环分支
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:LIMIT CYCLES BIFURCATION FROM A CUBIC ISOCHRONOUS CENTER UNDER NON-SMOOTH PERTURBATIONS
  • 作者:宋海风 ; 彭临平
  • 英文作者:SONG Hai-feng;PENG Lin-ping;School of Mathematics and System Sciences, Beihang University;Key Laboratory of Mathematics,Information and Behavior of the Ministry of Education,Beihang University;
  • 关键词:三次等时中心 ; 非光滑扰动 ; 极限环 ; 平均方法
  • 英文关键词:cubic isochronous center;;non-smooth perturbations;;limit cycles;;averaging method
  • 中文刊名:SXZZ
  • 英文刊名:Journal of Mathematics
  • 机构:北京航空航天大学数学与系统科学学院;北京航空航天大学数学信息与行为教育部重点实验室;
  • 出版日期:2018-09-27 15:18
  • 出版单位:数学杂志
  • 年:2019
  • 期:v.39;No.184
  • 基金:国家自然科学基金项目资助(11371046)
  • 语种:中文;
  • 页:SXZZ201903012
  • 页数:9
  • CN:03
  • ISSN:42-1163/O1
  • 分类号:118-126
摘要
本文研究了一个三次等时中心在非光滑扰动下的极限环分支问题.利用非光滑系统的一阶平均方法,获得了在任意小的分段三次多项式扰动下,从未扰动系统的周期环域中至多分支出7个极限环,而且此上界可以达到,推广了光滑扰动下的结果.
        This paper is devoted to study the bifurcation of limit cycles from a cubic isochronous center under any small non-smooth perturbations. By using the averaging theory for discontinuous differential systems, it proves that under any small piecewise cubic polynomial perturbations, at most seven limit cycles bifurcate from the period annulus sounding the center of the unperturbed system, and this upper bound can be reached, which extends the resultant under smooth perturbations.
引文
[1] Li S M, Zhao Y L. Limit cycles of perturbed cubic isochronous center via the second order averaging method[J]. Intern. J. Bifur. Chaos, 2014, 24(3):1450035.
    [2] Coll B, Gasull A, Prohens R. Bifurcation of limit cycles from two family of centers[J]. Dyn. Contin.Discrete Impuls. Syst., 2005, 12(2):275-287.
    [3] Han M A, Li J B. Lower bounds for the Hilbert number of polynomial systems[J]. J. Diff. Equ.,2012, 252(4):3278-3304.
    [4] Han M A, Yu P. Normal forms, Melnikov functions and bifurcations of limit cycles[M]. New York:Springer, 2012.
    [5] Iliev I D. Perturbations of quadratic centers[J]. Bull. Sci. Math., 1998, 122(2):107-161.
    [6] Chen F D, Li C Z, Llibre J, Zhang Z H. A unified proof on the weak Hilbert 16th problem for n=2[J]. J. Diff. Equ., 2006, 221(2):309-342.
    [7] Wang J H, Xiao D M. On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle[J]. J. Diff. Equ., 2011, 250(4):2227-2243.
    [8] Zoladek H. Quadratic systems with center and their perturbations[J]. J. Diff. Equ., 1994, 109(2):223-273.
    [9] Zhang P G. On the distribution and number of limit cycles for quadratic systems with two foci[J].Qual. The. Dyn. Syst., 2002, 3(2):437-463.
    [10] Zhang Z F, Li C Z. On the number of limit cycles of quadratic Hamiltonian systems under quadratic perturbations[J]. Adv. Math., 1997, 26(5):445-460.
    [11] Liu X, Han M A. Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems[J]. Intern.J. Bifur. Chaos, 2010, 20(5):1-12.
    [12] Llibre J, Novaes D D, Teixeira M A. On the birth of limit cycles for non-smooth dynamical systems[J]. Bull. Sci. Math., 2015, 139(3):229-244.
    [13] Liang F, Han M A. Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems[J]. Chaos, Soli. Prac., 2012, 45(4):454-464.
    [14] Li S M, Liu C J. A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential systems[J]. J. Math. Anal. Appl., 2015, 428(2):1354-1367.
    [15] Cen X L, Li S M,Zhao Y L. On the number of limit cycles for a class of discontinuous quadratic differential systems[J]. Math. Anal. Appl., 2017, 449(1):314-342.
    [16] Buica A, Libre J. Averaging methods for finding periodic orbits via brouwer degree[J]. Bull. Sci.Math., 2004, 128(1):7-22.
    [17] Sanders J A, Verbulst F. Averaging methods in nonlinear dynamic systems[M]. New York:SpringVerlag, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700