层状陶瓷及层状耐火材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Layered Ceramics and Layered Refractories
  • 作者:陈勇强 ; 李红霞 ; 刘国齐
  • 英文作者:CHEN Yongqiang;LI Hongxia;LIU Guoqi;School of Materials Science and Engineering,Zhengzhou University;Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.;
  • 关键词:陶瓷及耐火材料 ; 多层结构 ; 流延成型 ; 抗热震 ; 结构功能一体化
  • 英文关键词:ceramics and refractories;;multilayered structure;;tape casting;;thermal shock resistance;;integration of structure and function
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:郑州大学材料科学与工程学院;中钢集团洛阳耐火材料研究院有限公司;
  • 出版日期:2019-07-30
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51772277; 51372231);; 国家重点研发计划(2017YFB0304000)~~
  • 语种:中文;
  • 页:CLDB201917004
  • 页数:7
  • CN:17
  • ISSN:50-1078/TB
  • 分类号:38-44
摘要
现代工业技术的发展对钢铁强度、韧性、加工性能的要求日趋严格,尤其是作为优良结构材料的钢铁制品正逐步实现功能化;耐火材料是冶金高温工业重要的支撑材料,对优质钢冶炼的效率和质量至关重要,其正逐步向高效化、优质化、功能化、绿色化的方向发展。耐火材料的导热性、抗侵蚀、抗热震、抗冲刷磨损等基本特性相互影响,传统的耐火材料制备工艺无法保证耐火制品的各项性能达到最优。低热导的耐火材料可以防止钢水温度极速下降,缸内热量散失过快,进而降低能耗;但低热导耐火材料高温区与低温区的热应力差异较大,两部分区域之间产生的剪切应力容易导致耐火材料开裂损毁。高热导的耐火材料可以缓解温差应力对耐火制品的破坏,耐火材料热面温度降低还可以形成渣皮附着物,从而保护耐火制品,同时碱金属的化学侵蚀速率将明显降低。尤其是传统的含碳耐火材料,虽然碳组分提高了耐火材料的抗热震性,但在高温冶炼作用下,碳发生氧化使耐火材料中形成多孔结构,降低了材料的强度,导致材料易被熔渣侵蚀和渗透,也影响了钢中碳元素的含量。研究人员主要通过改善耐火材料组分与结构,添加或原位生成陶瓷保护相等方式优化耐火材料的性能,但优化效果仍旧单一,始终达不到结构与功能的良好统一。因此开发抗热震、抗侵蚀、无污染等良好匹配的结构功能一体化新型耐火材料十分必要。层状复合材料作为一种仿生设计,其精细的结构保证了材料优良的综合性能。尽管层状复合材料的制备方法较多,但均不免存在一些技术限制。粉体压层和顺序浇铸技术无法保证界面或界面层的均匀性,层间界面设计受限;离心沉积和电泳沉积技术对原料特性的依赖程度较高,不利于耐火材料结构设计。3D打印虽然获得广泛关注,但对设备尤其是原材料快速成型性要求较高,对陶瓷材料而言有颇多不足。相比之下,流延成型工艺操作灵活、原料适应性强、坯体便于后期加工和处理。因此,层状陶瓷及耐火材料相关研究多以此为基础。本文综述了层状陶瓷复合材料的制备工艺,以及不同制备方式和层状结构对其抗折强度、断裂韧性的影响规律;介绍了层状结构在耐火材料研究中的应用及其对耐火材料抗热震、抗侵蚀性能的影响;提出了层状耐火材料制备过程中的关键问题和今后的发展方向。
        The development of modern industrial technology has put forward to higher requirementson steel strength,toughness and processing perfor-mance for steel materials. In particular,iron and steel products gradually realize functionalization as excellent structural materials. Refractories are important supporting materials for high-temperature metallurgical industry,especially for the efficiency and quality of high quality steel smelting. The basic properties of refractories,such as thermal conductivity,corrosion resistance,thermal shock resistance and erosion wear resistance,are interacted with each other. The traditional preparation process of refractories can't realize the best performance of each property for refractory products. The low thermal conductivity refractories can prevent decreasing rapidly of the molten steel temperature,thus,reducing heat loss,so as to reduce energy consumption. However,the thermal stress in the high-temperature zone and the low-temperature zone is quite different,and the shear stress between the two zones can easily lead to the cracking and damage of the refractory. The high thermal conductivity refractories can alleviate the damage of temperature difference stress to refractory products. The temperature reduction of thermal surface of refractory materials can also form slag-skin attachments to protect refractory products. Meanwhile,the chemical erosion rate of alkali metals will be significantly reduced. Especially for traditional carbon-containing refractories,although the presence of carbon components improves the thermal shock resistance of the refractories,the oxidation of carbon in high-temperature smelting leads to the formation of porous structure in the refractories reducing the strength of the material. Then,the refractories are eroded and permeated by molten slag effecting the content of carbon in steel.The researchers mainly optimized the performance of refractories by improving the composition and structure of refractories and adding or in situ generating ceramic protection phase. However,the optimization effect is still single,which can't achieve good unity of structure and function.Therefore,it is necessary to develop new type refractories with well-matched of structure and function,such as thermal shock resistance,anti-erosion and non-pollution. As a kind of bionic design,the fine structure of laminated composites ensures its excellent comprehensive performance.Although there are many methods to prepare laminated composites,there are some technical limitations. The technology of powder compaction and sequential casting cannot guarantee the uniformity of interface or interface layer,and the design of interlayer interface is limited.Centrifugal deposition and electrophoretic deposition are highly dependent on the characteristics of raw materials,which is not conducive to the structural design of refractories. Although 3 D printing has been widely concerned,it has high requirements for equipment,especially for rapid prototyping of raw materials,and it has a lot shortcomings for ceramic materials. By contrast,the tape casting has flexible operation,good adaptable for raw material and convenient post processing for green tapes. Therefore,the researches on layered ceramics and refractories are often based on this.This paper reviews the preparation technology of layered ceramic composites and the influence of different preparation methods and layered structures on their fracture strength and fracture toughness. The application of layered structure in the study of refractories and its influence on the thermal shock resistance and corrosion resistance of refractories are introduced.The key problems and the future development direction of layered refractories are proposed.
引文
1 Karambelas G,Santhanam S,Wing Z N.Ceramics International,2013,39(2),1315.
    2 Wegst U G,Bai H,Saiz E,et al.Nature Materials,2015,14,23.
    3 Meyers M A,Chen P Y.Science,2013 ,339(6121),773.
    4 Bouville F,Maire E,Meille S,et al.Nature Materials,2014 ,13(5),508.
    5 Liu Z,Liu M,NieL,et al.International Journal of Hydrogen Energy,2013,38(2),1082.
    6 Largiller G,Bouvard D,Carry C P,et al.Mechanics of Materials,2012 ,53,123.
    7 Schaff?ner S,Freitag L,Hubálková J,et al.Journal of the European Ceramic Society,2016,36(8),2109.
    8 Chang J C,Velamakanni B V,Lange F F,et al.Journal of the American Ceramic Society,1991 ,74(9),2201.
    9 Chumanov I V,Anikeev A N,Chumanov V I.Procedia Engineering,2015 ,129,816.
    10 Ferrari B,Sánchez-Herencia A J,Moreno R.Materials Letters,1998,35(5-6),370.
    11 Scheithauer U,Bergner A,Schwarzer E,et al.Journal of Materials Research,2014 ,29(17),1931.
    12 Moya J S,Sánchez-Herencia A J,Requena J,et al.Materials Letters,1992 ,14(5-6),333.
    13 Hadraba H,Drdlik D,Chlup Z,et al.Journal of the European Ceramic Society,2013,33(12),2305.
    14 Moon R J,Bowman K P,Trumble K P,et al.Acta Materialia,2001 ,49(6),995.
    15 Yeo J G,Jung Y G,Choi S C.Materials Letters,1998 ,37,304.
    16 Zhang G J,Yue X M,Watanabe T.Journal of the European Ceramic Society,1999 ,19(12),2111.
    17 Roosen A.Advances in Science and Technology,2006,45,397.
    18 Balakrishnan J A,Krishnan B,Panicker R P N,et al.Advances in Applied Ceramics,2013 ,106(3),128.
    19 Bulatova R,Jabbari M,Kaiser A,et al.Journal of the European Ceramic Society,2014,34(16),4285.
    20 Gurauskis J,Sánchez-Herencia A J.Journal of the European Ceramic Society,2007,27(2-3),1389.
    21 Manu K,Sebastian M T.Ceramics International,2016,42(1),1210.
    22 Piwonski M A,Roosen A.Journal of the European Ceramic Society,1999,19(2),263.
    23 Gurauskis J,Sanchez-Herencia A J,Baud? N C.Key Engineering Mate-rials,2007,333,219.
    24 G?tschel I,Gutbrod B,Travitzky N,et al.Advances in Applied Ceramics,2013,112(6),358.
    25 Jurkow D,Roguszczak H,Golonka L.Journal of the European Ceramic Society,2009,29(4),703.
    26 Medri V,Pinasco P,Sanson A,et al.International Journal of Applied Ceramic Technology,2012,9(2),349.
    27 Bermejo R,Torres Y,Sanchezherencia A,et al.Residual stresses.Acta Materialia,2006 ,54(18),4745.
    28 Kiefer T,Moon H,Lange F F.Journal of the American Ceramic Society,2005,88(10),2855.
    29 Lugovy M,Orlovskaya N,Slyunyayev V,et al.Composites Science & Technology,2002,62(6),819.
    30 Quinn G D,Melandri C,de Portu G,et al.Journal of the American Ceramic Society,2013,96(7),2283.
    31 Salahi E,Esfahani H,Mobasherpour I,et al.Ceramics International,2014,40(2),2717.
    32 Chang Y,Bermejo R,Messing G L,et al.Journal of the American Cera-mic Society,2014,97(11),3643.
    33 Lugovy M,Slyunyayev V,Subbotin V,et al.Composites Science and Technology,2004,64(13-14),1947.
    34 Parente P,Ortega Y,Savoini B,et al.Journal of the European Ceramic Society,2012 ,32(16),3989.
    35 Zhou P,Hu P,Zhang X,et al.International Journal of Refractory Metals and Hard Materials,2015,52,12.
    36 Wang C A,Yong H,Zan Q,et al.Journal of the American Ceramic Society,2002,85(10),2457.
    37 Bermejo R,Danzer R.Engineering Fracture Mechanics,2010,77(11),2126.
    38 Chang Y,Bermejo R,?eve?ek O,et al.Journal of the European Ceramic Society,2015,35(2),631.
    39 Grigoriev O N,Karoteev A V,Maiboroda E N,et al.Composites Part B:Engineering,2006,37(6),530.
    40 Hbaieb K,Mcmeeking R M,Lange F F.International Journal of Solids and Structures,2007,44(10),3328.
    41 Kotoul M,Sevecek O,Vyslouzil T.Theoretical and Applied Fracture Mechanics,2012,61,40.
    42 Lugovy M,Slyunyayev V,Orlovskaya N,et al.Acta Materialia,2005 ,53(2),289.
    43 Robert M,Keith B,Kevin T,et al.Journal of the American Ceramic Society,2010,83(2),445.
    44 Cui K,Li Y.International Journal of Refractory Metals and Hard Mate-rials,2016,54,148.
    45 Vandeperre L J,Kristofferson A,Carlstr?m E,et al.Journal of the American Ceramic Society,2001,84(1),104.
    46 Wei C,Ye C.International Journal of Refractory Metals and Hard Materials,2015,51,233.
    47 Shevchenko A V,Dudnik E V,Ruban A K,et al.Powder Metallurgy & Metal Ceramics,2003,42(3),145.
    48 Udupa G,Rao S S,Gangadharan K V.Procedia Materials Science,2014,5,1291.
    49 Wang Q,Li Y,Sang S,et al.Journal of Alloys & Compounds,2015,645(5),388.
    50 Chen J,Li N,Yan W.Journal of the European Ceramic Society,2016 ,36(12),1505.
    51 Scheithauer U,Slawik T,Haderk K,et al.In:Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013).Victoria,BC,2014,pp.267.
    52 Jakobsen D,Rauch H,Dudczig S,et al.Journal of Materials Processing Technology,2016,229,623.
    53 G?tschel I,Hayashi Y,Kakimoto K I,et al.International Journal of Applied Ceramic Technology,2012,9(2),329.
    54 Jakobsen D,G?tschel I,Roosen A.Refractories Worldforum,2016,8(2),86.
    55 Jakobsen D,Hammerbacher R,Dudczig S,et al.Journal of Ceramic Science & Technology,2014,5(2),137.
    56 Jakobsen D,Zhang W,Doynov N,et al.Ceramics International,2016,42(12),13562.
    57 Geigenmüller A,Spindler H,Lenk K,et al.Journal of Ceramic Science & Technology,2014,5(2),71.
    58 Hein J,Khatib O E,Kuna M,et al.Journal of Ceramic Science & Technology,2016,7(2),203.
    59 Pelissari P I B G B,Bouville F,et al.Journal of the European Ceramic Society,2017,38(4),2186.
    60 Naebe M,Shirvanimoghaddam K.Applied Materials Today,2016,5,223.
    61 Scheithauer U,Schwarzer E,Michaelis A.Refractories Worldforum,2016,8(2),95.
    62 Minatto F D,Milak P,Noni A D,et al.Materials Science Forum,2015,114(3),393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700