纵向减振推力轴承液压减振系统的热平衡性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of heat balance of piston hydraulic damper system installed on thrust bearing
  • 作者:陈繁 ; 李天匀 ; 赵耀 ; 朱翔
  • 英文作者:CHEN Fan;LI Tianyun;ZHAO Yao;ZHU Xiang;School of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;Hubei Key Laboratory of Naval Architecture & Ocean Engineering Hydrodynamics;
  • 关键词:液压减振系统 ; 摩擦产热 ; 液动损失 ; 推力轴承 ; 散热
  • 英文关键词:hydraulic damper system;;frictional heat production;;head loss;;thrust bearing;;heat dissipation
  • 中文刊名:JCZG
  • 英文刊名:Chinese Journal of Ship Research
  • 机构:华中科技大学船舶与海洋工程学院;高新船舶与深海开发装备协同创新中心;船舶与海洋水动力湖北省重点实验室;
  • 出版日期:2018-05-31 15:17
  • 出版单位:中国舰船研究
  • 年:2018
  • 期:v.13;No.75
  • 基金:国家自然科学基金资助项目(51579109,51479079,51379083);; 中央高校基本科研业务费资助项目(2016YXZD010)
  • 语种:中文;
  • 页:JCZG201804015
  • 页数:9
  • CN:04
  • ISSN:42-1755/TJ
  • 分类号:113-121
摘要
[目的]为分析活塞液压减振器稳定工作状态时的热平衡性能,解决纵向减振推力轴承液压减振系统的油路封闭且外部扰动输入未知的产热计算难题,[方法]将活塞摩擦损失和液压油液动损失微观产热机理的计算方法应用于液压减振系统的产热分析中,以推导出活塞振动及液压油往复流动时的功率损耗计算公式。针对具体模型的活塞摩擦产热及液动损失,计算和分析液压减振系统产热功率随振动角频率及活塞行程变化的规律。通过计算外部扰动输入功率,建立轴承部位的热学有限元模型,以得到结构的稳态温升及热流分布。[结结果]计算结果表明,外部扰动输入功率与各部分产热功率之和大体相等,系统稳态温升较低,热流分布状况合理。[结论]所提产热计算方法可行,计算得到的系统近似温升在许可范围内。根据系统的热流分布图,可在热流集中部位采取相应措施来降低系统局部温升。
        [Objectives]This paper aims to analyze the thermal equilibrium performance of a pistonhydraulic damper in a stable working state so as to solve the problem in which the oil circuit of thehydraulic damping system of a longitudinal vibration-reduction thrust bearing is closed and the externaldisturbance input is unknown. [Methods]To this end,a micro-mechanism for the heat productioncalculation of piston friction loss and hydraulic fluid loss is applied to the thermal analysis of the hydraulicdamping system in order to deduce the formula of the power loss calculation of the piston vibration and thereciprocating flow of the hydraulic oil. Meanwhile,the piston friction loss and head loss of the model arecalculated,and the heat production variation of the hydraulic damping system with dynamic frequency andpiston stroke is analyzed. In addition,the input power of the external disturbance is ascertained and thethermal finite element model of the bearing part established,allowing the steady temperature rise and heatflow distribution of the structure to be calculated.[Results]The calculation results show that the inputpower of the external disturbance is roughly equal to the sum of the thermal power of each part,the steadytemperature rise of the system is fairly low and the heat flow division is reasonable.[Conclusions]Theresults show that the heat production calculation method described in this paper is quite feasible.Furthermore, the calculated temperature rise of the system is within the permissible range, andcorresponding effective measures can be taken to reduce local temperature rise at intensive heat flow partsaccording to the heat flow division diagram of the system.
引文
[1]罗强.降低轴系子系统纵向振动的液压减振装置研究[D].北京:中国舰船研究院,2014.
    [2]徐鹏,宋振国,陈汝刚,等.船舶蒸汽管网水力热力耦合计算方法[J].中国舰船研究,2016,11(4):116-120.XU P,SONG Z G,CHEN R G,et al.Hydraulic and thermal coupling calculation for the steam pipe network of ships[J].Chinese Journal of Ship Research,2016,11(4):116-120(in Chinese).
    [3]张笑,胡元,秦家升,等.挖掘机液压系统温升及热平衡研究[J].机械工程师,2012(10):16-18.ZHANG X,HU Y,QIN J S,et al.Research on temperature rise and heat balance of excavator hydraulic system[J].Mechanical Engineer 2012(10):16-18(in Chinese).
    [4]牛宏杰,李盛龙,唐斌,等.滑移装载机液压系统热平衡研究与优化分析[J].工程机械,2013,44(1):16-19.NIU H J,LI S L,TANG B,et al.Research and optimization analysis on heat balance of hydraulic system for skid steer loaders[J].Construction Machinery and Equipment,2013,44(1):16-19.
    [5]郭洪江.XGL50装载机液压系统热平衡问题的研究[D].长春:吉林大学,2004.
    [6]王剑鹏,秦四成,杨立光,等.装载机转向液压系统的热平衡分析与比较[J].中南大学学报(自然科学版),2016,47(5):1527-1532.WANG J P,QIN S C,YANG L G,et al.Analysis and comparison for thermal balance of steering hydraulic system of loader[J].Journal of Central South University(Science and Technology),2016,47(5):1527-1532(in Chinese).
    [7]邓永建.汽车起重机液压系统热平衡的仿真与实验研究[D].长春:吉林大学,2011.
    [8]机械设计手册编委会.液压传动与控制[M].4版.北京:机械工业出版社,2007.
    [9]刘文平,王林涛,姜兆亮.闭式液压系统油温分析及补油量确定[J].中南大学学报(自然科学版),2013,44(9):3658-3664.LIU W P,WANG L T,JIANG Z L.Oil temperature analysis and determination of slippage pump discharge of closed hydraulic system[J].Journal of Central South University(Science and Technology),2013,44(9):3658-3664(in Chinese).
    [10]陈云飞.某商用车液压动力转向系统热特性模拟分析研究[D].长春:吉林大学,2014.
    [11]王冶,徐筱欣.船用换热器三维流场数值模拟[J].中国舰船研究,2013,8(4):79-85.WANG Y,XU X X.Numerical simulation of the 3D flow field for marine heat exchangers[J].Chinese Journal of Ship Research,2013,8(4):79-85(in Chinese).
    [12]谢栋,赵耀,董宏宝.船体中厚钢板局部热压成形中的回弹仿真分析[J].中国舰船研究,2017,12(5):132-140.XIE D,ZHAO Y,DONG H B.Numerical simulation of springback of medium-thick plates in local hot rolling[J].Chinese Journal of Ship Research,2017,12(5):132-140(in Chinese).
    [13]张钦国.工程车辆温控独立冷却系统关键技术研究[D].长春:吉林大学,2016.
    [14]习仁国,刘卫国,陈焕明,等.飞机液压系统热分析方法的研究[J].机床与液压,2011,39(23):41-44.XI R G,LIU W G,CHEN H M,et al.Research on thermal analysis method of aircraft hydraulic system[J].Machine Tool&Hydraulics,2011,39(23):41-44(in Chinese).
    [15]洪超.基于有限元法的内燃机活塞裙部型面设计与研究[D].重庆:重庆大学,2010.
    [16]吉泽升.传输原理[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [17]张靖周,常海萍.传热学[M].北京:科学出版社,2009.
    [18]张耀宸,马占水.机械加工工艺设计实用手册[M].北京:航空工业出版社,1993.
    [19]邓宝清.内燃机活塞缸套系统非光滑效应的仿生研究[D].长春:吉林大学,2004.
    [20]刘正林.摩擦学原理[M].北京:高等教育出版社,2009.
    [21]布尚.摩擦学导论[M].葛世荣,译.北京:机械工业出版社,2006.
    [22]徐辅仁.O形密封圈引起的摩擦力的计算[J].润滑与密封,1989(1):32-34.XU F R.Calculating frictional force caused by O-ring seal[J].Lubrication Engineering,1989(1):32-34(in Chinese).
    [23]管红根,陈常顺,高树滋.可压缩液体汽车减振器的动态特性分析和研究[J].解放军理工大学学报(自然科学版),2000,1(6):70-74.GUAN H G,CHEN C S,GAO S Z.Toward the dynamic characteristics of compressible liquid automobile shock absorber[J].Journal of PLA University of Science and Technology(Natural Science),2000,1(6):70-74(in Chinese).
    [24]张维,李天匀,赵耀,等.基于液压阻尼减振器的轴系纵振控制研究[J].中国造船,2012,53(1):18-27.ZHANG W,LI T J,ZHAO Y,et al.Research on axial vibration control of ship shafting based hydraulic damping shock absorber[J].Shipbuilding of China,2012,53(1):18-27(in Chinese).
    [25]储炜,赵耀,张赣波,等.共振转换器的动力反共振隔振理论与应用[J].船舶力学,2016,20(1/2):222-230.CHU W,ZHAO Y,ZHANG G B,et al.Dynamic anti-resonance vibration isolation theory of resonance changer and application[J].Journal of Ship Mechanics,2016,20(1/2):222-230(in Chinese).
    [26]蒋华义.输油管道设计与管理[M].北京:石油工业出版社,2010.
    [27]缪仲英,曾远文.用功能原理讨论稳定受迫振动[J].大学物理,2010,29(11):7-9.
    [28]李双喜,蔡纪宁,张秋翔,等.机械密封补偿机构中辅助O形密封圈的性能分析[J].摩擦学学报,2010,30(3):308-314.LI S X,CAI J N,ZHANG Q X,et al.Performance analysis of O-ring Used in compensatory configuration of mechanical seal[J].Tribology,2010,30(3):308-314(in Chinese).
    [29]马庆芳.实用热物理性质手册[M].北京:中国农业机械出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700