5083铝合金气胀成形恒应变速率压力加载方式研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on pressure loading mode of 5083 aluminum air bulging at constant strain rate
  • 作者:齐飞 ; 陈东 ; 李蕙宇 ; 李永兵 ; 周英丽 ; 刘晨枫
  • 英文作者:QI Fei;CHEN Dong;LI Hui-yu;LI Yong-bing;ZHOU Ying-li;LIU Chen-feng;National Key Laboratory of Advanced Forming Technology and Equipment,Beijing National Innovation Institute of Lightweight Ltd.;School of Machinery and Delivery,Shenyang Institute of Technology;
  • 关键词:5083铝合金 ; 气胀成形 ; 恒应变速率 ; 气压加载
  • 英文关键词:5083 aluminum alloy;;air bulging;;constant strain rate;;air pressure loading
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:北京机科国创轻量化科学研究院有限公司先进成形技术与装备国家重点实验室;沈阳工学院机械与运载学院;
  • 出版日期:2019-06-24
  • 出版单位:塑性工程学报
  • 年:2019
  • 期:v.26;No.136
  • 基金:国家科技重大专项先进成形与焊接共性关键技术创新能力平台建设(2018ZX04001001)
  • 语种:中文;
  • 页:SXGC201903016
  • 页数:7
  • CN:03
  • ISSN:11-3449/TG
  • 分类号:95-101
摘要
采用国产工业态5083铝合金,通过气胀成形方式试制高铁车窗零件。对5083铝合金原始金相组织进行分析,发现其平均晶粒尺寸为24μm,远大于国外细晶材料的晶粒尺寸,很难进行超塑成形,因此选择合适的成形参数(成形温度、应变速率、压力加载曲线)来弥补材料在超塑性能上的不足。在不同温度和应变速率条件下对试样进行高温拉伸试验,结果表明:当温度小于475℃,伸长率普遍小于100%;当温度为550℃时,伸长率受应变速率影响变化剧烈,不适合作为成形温度。因此选择气胀成形的温度为525℃,应变速率为6. 56×10~(-4)s~(-1)。通过对成形过程中圆角的应力应变状态进行分析,得到了圆角成形的恒应变速率压力加载方式,并研究了当圆角两边夹角角度变化时恒应变速率压力加载曲线的差别。
        A high-speed-railway window part was made in the way of air bulging using domestic industrial state 5083 aluminum alloy. By analyzing the original metallographic microstructure of 5083 aluminum alloy,it is found that the average grain size is 24 μm,which is more coarse than the fine-grained foreign material,making it difficult to realize the superplastic forming. Therefore,appropriate forming parameters,such as temperature,strain rate and loading curve are imperative to compensate for the drawback of the poor superplasticity of the material. The high-temperature tensile tests at different temperatures and strain rates were carried out. The results show that the elongation rate is lower than 100% when the temperature is below 475 ℃; the elongation rate fluctuates acutely with the change of strain rate when the temperature is 550 ℃,making it unsuitable to use as a forming temperature. Thus,the forming temperature and strain rate are set at 525 ℃ and 6. 56 × 10~(-4) s~(-1),respectively. By analyzing the stress and strain state of the fillet in the forming process,the pressure loading curve at a constant strain rate was formulated,and the difference of the constant strain rate pressure loading curves was researched when the angle of the fillet varied.
引文
[1]VERMA R,GHOSH A.K,KIM S,et al.Grain refinement and superplasticity in 5083 Al[J].Materials Science and Engineering A,1995,191(1-2):143-150.
    [2]IWASAKI H,HIGASHI K,TANIUMURA S,et al.Superplastic deformation characteristics of 5083 aluminium alloy[C]//Proceedings of Superplasticity in Advanced Materials.Osaka:Japan Society of Resarch on Superplasticity,1991:447-452.
    [3]罗应兵.轻合金超塑变形机理及成形工艺的研究[D].上海:上海交通大学,2006.LUO Yingbing.Study on superplastic deformation mechanism and forming process of light alloy[D].Shanghai:Shanghai Jiao Tong University,2006.
    [4]谷岩波,王辉,王会廷,等.AA5754铝合金板材渐进成形壁厚均匀性研究[J].锻压技术,2018,43(1):33-41.GU Yanbo,WANG Hui,WANG Huiting,et al.Study on wall thickness uniformity in incremental forming for aluminum alloy AA5754 sheet[J].Forging&Stamping Technology,2018,43(1):33-41.
    [5]WU H Y,PERNG J Y,SHIS S H,et al.Cavitation characteristics of a superplastic 5083 Al alloy during gas blow forming[J].Journal of Material Science,2006,41(22):7446-7453.
    [6]黄锐.TC4复杂盒型件超塑胀形加载曲线优化控制[J].南京航空航天大学学报,2010,42(1):104-106.HUANG Rui.Optimization of pressure cycle for superplastic forming of complex TC4 box-shaped part[J].Journal of Nanjing University of Aeronautics and Astronautics,2010,42(1):104-106.
    [7]SHEIKHALISHAHI H,RASOULI M A,JAFARI NEDOUSHANR.Improving the prediction of part thickness in superplastic forming process of Ti-6Al-4V alloy using an appropriate constitutive equation[J].Iranian Journal of Science&Technology Transactions of Mechanical Engineering,2016,40(1):69-75.
    [8]KAIBYSHEV O A.Superplasticity of alloys,inter-metallides,and ceramics[M].Berlin Heidelberg:Springer-Verlag,1992.
    [9]陈雷,温卫东,崔海涛.Hill屈服准则向拉-压非对称材料的推广[J].中国科学:技术科学,2013,43(1):57-65.CHEN Lei,WEN Weidong,CUI Haitao.Generalization of Hill's yield criterion to tension-compression asymmetry materials[J].Science China:Technology Science,2012,55:89-97
    [10]VERMA R,KIM S.Superplastic behavior of copper-modified 5083aluminum alloy[J].Journal of Materials Engineering&Performance,2007,16(2):185-191.
    [11]刘健,申儒林,湛利华,等.2A12硬铝合金板热拉深成形极限图研究[J].锻压技术,2018,43(1):170-176.LIU Jian,SHEN Rulin,ZHAN Lihua,et al.Study on forming limit diagram of thermal drawing for hard aluminum alloy 2A12sheet[J].Forging&Stamping Technology,2018,43(1):170-176.
    [12]黄翔,张中元.超塑胀形件厚度分布的计算和控制[J].锻压装备与制造技术,1995,(5):3-5.HUANG Xiang,ZHANG Zhongyuan.Calculation and controlling of thickness distribution of superplastic bulged parts[J].China Metalforming Equipment&Manufacturing Technology,1995,(5):3-5.
    [13]宋玉泉,赵军.超塑胀形充填圆角、型槽最佳加压规律的力学解析[J].吉林工业大学学报,1985,(3):269-278.SONG Yuquan,ZHAO Jun.Mechanical analysis of the best pressure loading mode for superplastic bulging filling fillet and groove[J].Journal of Jilin University of Technology,1985,(3):269-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700