大应变下贴片天线应变传感器的性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Performance of the Strain Sensor under the Large Strain
  • 作者:徐康乾 ; 谢丽宇 ; 薛松涛 ; 蒋灿 ; 万国春 ; 张建国
  • 英文作者:XU Kangqian;XIE Liyu;XUE Songtao;JIANG Can;WAN Guochun;ZHANG Jianguo;Department of Disaster Mitigation for Structures,Tongji University;Nippon Institute of Technology Department of engineering construction;Tongji University Department of Electronic Science and Technology;Shanghai Investment Raw Water Co.,Ltd. Education Training Center;
  • 关键词:贴片天线 ; 应变传感器 ; 谐振频率
  • 英文关键词:patch antenna;;strain sensor;;resonant frequency
  • 中文刊名:JGGC
  • 英文刊名:Structural Engineers
  • 机构:同济大学结构防灾减灾工程系;日本东北工业大学工学部;同济大学电子信息工程学院;上海城投原水有限公司教育培训中心;
  • 出版日期:2019-02-28
  • 出版单位:结构工程师
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(51478356);; 政府间国际科技创新合作重点专项(2016YFE0127600);; 中央高校基本科研业务费专项资金资助
  • 语种:中文;
  • 页:JGGC201901008
  • 页数:7
  • CN:01
  • ISSN:31-1358/TU
  • 分类号:53-59
摘要
基于微波贴片天线的应变传感器近年来在应变监测领域得到了广泛的研究和发展。由于天线特殊的力学性质——其谐振频率与天线的尺寸存在一定关系,即当天线经历应变时其尺寸发生改变,进而引起谐振频率的偏移,可将天线作为应变传感器的传感单元。理论推导和相关试验表明,在低应变下天线的谐振频率的偏移量与应变呈良好的线性关系,但在大应变时缺乏研究。通过设计试验将天线粘贴在钢板上进行大应变拉伸,试验结果显示在发生粘结破坏之前天线的谐振频率与应变同样具有较好的线性关系,且传感器的灵敏度与初始谐振频率十分接近,符合理论推导。
        The strain sensor based on microwave patch antenna is presented to monitor structural strain.The resonant frequency of antenna will shift when dimension changes due to strain antenna experience.Taking advantage of this special mechanical property,the antenna can be used as strain sensing unit.Theoretically,the resonant frequency has good linearity with strain,which is validated by experiment under low strain level and lack of research when strain over 0.1%.The experiment by stretching the steel plate on which antenna is attached is conducted.The results indicate that the relationship between resonant frequency and strain remains linear until connection damage,and the sensitivity is fairly close to initial resonant frequency,which is consistent with theory.
引文
[1] Sohn H,Farrar C R,Hemez F M,et al.A review of structural health monitoring literature:1996-2001[J].Data Acquisition,2004,la-13976-m.
    [2] 尹福炎.电阻应变计技术六十年(一) 电阻应变计的由来、发展及展望[J].传感器世界,1998(8):27-32. Yin Fuyan.Sixty years of electric resistance strain gage technique (Ⅰ):The origin,development and prospect of electric resistance strain gage[J].Sensor World,1998(8):27-32.(in Chinese)
    [3] 张慎伟,楼昕,张其林,等.钢结构施工过程跟踪监测技术与工程实例分析[J].施工技术,2008,37(3):62-64. Zhang Shenwei,Lou Xin,Zhang Qilin,et al.Tracking monitoring technology of steel structure construction process and its application[J].Construction Technology,2008,37(3):62-64.(in Chinese)
    [4] 南秋明.光纤光栅应变传感器的研制及应用[Z].武汉:武汉理工大学,2003. Nan Qiuming.Study and application of fiber bragg gratings strain sensor[Z].Wuhan:Wuhan University of Technology,2003.(in Chinese)
    [5] Lynch J P.A Summary review of wireless sensors and sensor networks for structural health monitoring[J].Shock & Vibration Digest,2006,38(2):91-128.
    [6] Butler J C,Vigliotti A J,Verdi F W,et al.Wireless,passive,resonant-circuit,inductively coupled,inductive strain sensor[J].Sensors & Actuators A Physical,2002,102(1-2):61-66.
    [7] Mita A,Takahira S.Health monitoring of smart structures using damage index sensors,2002[C].2002ER.
    [8] Mita A,Takhira S.A smart sensor using a mechanical memory for structural health monitoring of a damage-controlled building[J].Smart Materials & Structures,2003,12(12):204-209.
    [9] Takahira S.Damage Index Sensor for Smart Structures[J].Structural Engineering & Mechanics,2004,17(3_4):331-346.
    [10] Chuang J,Thomson D J.Wireless strain sensor based on resonant RF cavities,2004[C].2004ER.
    [11] Thomson D J,Card D,Bridges G E.RF Cavity Passive Wireless Sensors With Time-Domain Gating-Based Interrogation for SHM of Civil Structures[J].IEEE Sensors Journal,2009,9(11):1430-1438.
    [12] Ozbey B,Demir H V,Kurc O,et al.Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor[J].Sensors,2014,14(10):19609-19621.
    [13] Burak O,Erturk V B,Volkan D H,et al.A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members[J].Sensors,2016,16(4):1-17.
    [14] Occhiuzzi C,Paggi C,Marrocco G.Passive RFID Strain-Sensor Based on Meander-Line Antennas[J].IEEE Transactions on Antennas & Propagation,2011,59(12):4836-4840.
    [15] Bai L.RFID Sensor-driven structural condition monitoring in integrated building information modeling environment[J].Dissertations & Theses-Gradworks,2013.
    [16] Daliri A,Galehdar A,John S,et al.Circular microstrip patch antenna strain sensor for wireless structural health monitoring,2010[C].2010ER.
    [17] Daliri A,Galehdar A,John S,et al.Wireless strain measurement using circular microstrip patch antennas[J].Sensors & Actuators A Physical,2012,184(3):86-92.
    [18] Xiaohua Y,Terence W,Yang W,et al.Passive wireless smart-skin sensor using RFID-based folded patch antennas[J].International Journal of Smart & Nano Materials,2011,2(1):22-38.
    [19] Yi Xiaohua,Cho Chunhee,Cooper James,et al.Passive wireless antenna sensor for strain and crack sensing electromagnetic modeling,simulation,and testing[J].Smart Materials & Structures,2013,22(8):85009.
    [20] 鲍尔.微带天线[M].成都:电子工业出版社,1984. Bauer.Microstrip Antennas[M].Chengdu:Publishing House of Electronics Industry,1984.(in Chinese)
    [21] 蒋灿.基于微波贴片天线的应变传感器研究[D].上海:同济大学,2017. Jiang Can.A Research of strain sensor based on nicrowave folded patch antenna[D].Shanghai:Tongji University,2017.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700