3D打印AlSi10Mg合金组织性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the structure and properties of the AlSi10Mg samples produced by 3D printing
  • 作者:李晓丹 ; 朱庆丰 ; 孔淑萍 ; 康延磊 ; 王向杰 ; 倪家强
  • 英文作者:LI Xiaodan;ZHU Qingfeng;KONG Shuping;KANG Yanlei;WANG Xiangjie;NI Jiaqiang;AVIC Shenyang Aircraft;Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education (Northeastern University);School of Materials Science and Engineering ,Northeastern University;
  • 关键词:3D打印 ; AlSi10Mg ; 抗拉强度 ; 微观组织 ; 激光熔覆
  • 英文关键词:3D printing;;AlSi10Mg;;tensile strength;;microstructure;;laser cladding
  • 中文刊名:CLKG
  • 英文刊名:Materials Science and Technology
  • 机构:中航工业沈阳飞机工业(集团)有限公司;材料电磁过程研究教育部重点实验室(东北大学);东北大学材料科学与工程学院;
  • 出版日期:2018-11-23 13:57
  • 出版单位:材料科学与工艺
  • 年:2019
  • 期:v.27
  • 基金:辽宁省自然科学基金资助项目(2015022003);; 国家自然科学基金资助项目(51204053,51374067)
  • 语种:中文;
  • 页:CLKG201902002
  • 页数:6
  • CN:02
  • ISSN:23-1345/TB
  • 分类号:22-27
摘要
3D打印技术(3D printing)是20世纪90年代出现的一种新型快速成型技术,为提升我国与该技术相关的扫描路径、扫描宽度和扫描深度等关键参数的控制水平,本文利用金相显微镜和扫描电镜分析了用进口EOSM280金属粉末激光烧结系统制备的AlSi10Mg合金制品的组织,并检测了制品的力学性能。结果表明:3D打印试样平行构建方向形成典型的鱼鳞状组织,这些鱼鳞状组织是激光扫描熔池凝固后形成的;组织分析结果表明,扫描形成熔池深度约为180μm,扫描间距约为210μm,层与层间的扫描方向互成120°;凝固熔池内形成了典型的柱状晶,其生长方向与传热方向平行;柱状晶内的共晶组织呈"管状",Si颗粒尺寸细小均匀;平行于构建方向样品的抗拉强度和延伸率分别为487.5 MPa和9.0%,垂直于构建方向样品的抗拉强度和延伸率分别为490.0 MPa和7.0%.
        3D printing technology is a new rapid prototyping technology which appeared in 1990 s. The key parameters(such as scanning path,scanning depth and scanning width) of this technology are mastered by Euro-American countries. The 3D printing technology level still needs to be improved in China. In order to reveal the features of the 3 D printing technology, the AlSi10 Mg alloy samples were produced by the metallic selective laser melting system(EOSM280) provided by the EOS Company. The structure and mechanical properties of the samples were investigated. The results show that the fish scale like structures which formed on the side along the building direction during laser scanning actually are the solidification molten pool. The morphology of the solidification pool at the top of the sample show that the depth of the molten pool of each laser scanning is about 180 μm, the laser beam spacing on the horizontal direction is 210 μm, and the included angle of scanning direction between adjacent layer is about 120°. The columnar grains are formed in the solidification molten pool, and the growth direction of the columnar grains is parallel to the heat transfer direction. Tubular shape eutectic structures distribute in the columnar grains, and the Si particles on the dendrite arms are very fine and uniform. There is no major influence for the build orientation on the tensile properties. The tensile strength and the elongation of the sample in the building direction are 487.5 MPa and 9.0% respectively. And the tensile strength and the elongation of the sample vertical to building direction are 490 MPa and 7.0 % respectively.
引文
[1] AMATO K N,GAYTAN S M,MURR L E,et al.Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J].Acta Materialia,2012,60(5):2229-2239.DOI:10.1016/j.actamat.2011.12.032
    [2] KRUTH J P,FROYEN L,VAN VAERENBERGH J,et al.Selective laser melting of iron-based powder[J].Journal of Materials Processing Technology,2004,149(1):616-622.DOI:10.1016/j.jmatprotec.2003.11.051
    [3] THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti–6Al–4V[J].Acta Materialia,2010,58(9):3303-3312.DOI:10.1016/j.actamat.2010.02.004
    [4] ROMBOUTS M,KRUTH J P,FROYEN L,et al.Fundamentals of selective laser melting of alloyed steel powders[J].CIRP Annals-Manufacturing Technology,2006,55(1):187-192.DOI:10.1016/S0007-8506(07)60395-3
    [5] ABE F,OSAKADA K,SHIOMI M,et al.The manufacturing of hard tools from metallic powders by selective laser melting[J].Journal of materials processing technology,2001,111(1):210-213.DOI:10.1016/S0924-0136(01)00522-2
    [6] VANDENBROUCKE B,KRUTH J P.Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J].Rapid Prototyping Journal,2007,13(4):196-203.DOI:10.1108/13552540710776142
    [7] LOUVIS E,FOX P,SUTCLIFFE C J.Selective laser melting of aluminium components[J].Journal of Materials Processing Technology,2011,211(2):275-284.DOI:10.1016/j.jmatprotec.2010.09.019
    [8] DADBAKHSH S,HAO L.Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites[J].Journal of Alloys and Compounds,2012,541:328-334.DOI:10.1016/j.jallcom.2012.06.097
    [9] GU D,WANg Z,SHEN Y,et al.In-situ TiC particle reinforced Ti-Al matrix composites:powder preparation by mechanical alloying and selective laser melting behavior[J].Applied Surface Science,2009,255(22):9230-9240.DOI:10.1016/j.apsusc.2009.07.008
    [10] BRANDL E,HECKENBERGER U,HOLZINGER V,et al.Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM):Microstructure,high cycle fatigue,and fracture behavior[J].Materials & Design,2012,34:159-169.DOI:10.1016/j.matdes.2011.07.067
    [11] READ N,WANG W,ESSA K,et al.Selective laser melting of AlSi10Mg alloy:Process optimisation and mechanical properties development[J].Materials & Design,2015,65:417-424.DOI:10.1016/j.matdes.2014.09.044
    [12] THIJS L,KEMPEN K,KRUTH J P,et al.Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J].Acta Materialia,2013,61(5):1809-1819.DOI:10.1016/j.actamat.2012.11.052
    [13] KEMPEN K,THIJS L,VAN HUMBEECK J,et al.Mechanical properties of AlSi10Mg produced by selective laser melting[J].Physics Procedia,2012,39:439-446.DOI:10.1016/j.phpro.2012.10.059
    [14] LI Y,GU D.Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J].Materials & Design,2014,63:856-867.DOI:10.1016/j.matdes.2014.07.006
    [15] BUCHBINDER D,SCHLEIFENBAUM H,HEIDRICH S,et al.High power selective laser melting (HP SLM) of aluminum parts[J].Physics Procedia,2011,12:271-278.DOI:10.1016/j.phpro.2011.03.035
    [16] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys[J].Nature,2017,549(7672):365-369.DOI:10.1038/nature23894
    [17] 孙靖,朱小刚,王联凤,等.扫描方式与预热温度对激光选区熔化制备大尺寸AlSi10Mg合金性能的影响[J].机械工程材料,2017,41(10):52-57.SUN Jing,ZHU Xiaogang,WANG Lianfeng,et al.Effect of scanning strategy and preheating temperature on properties of large-scale AlSi10Mg alloy prepared by selective laser melting [J].Materials for Mechanical Engineering,2017,41 (10) 52-57.DOI:10.11973/jxgccl201710012
    [18] 张文奇,朱海红,胡志恒,等.AlSi10Mg的激光选区熔化成形研究[J].金属学报,2017(8):918-926.ZHANG Wenqi,ZHU Haihong,HU Zhiheng,et al.Study on the selective laser melting of AlSi10Mg [J].Acta Metallurgica Sinica,2017(8):918-926.DOI:10.11900/0412.1961.2016.00472
    [19] BOYER H E,GAIL T L.Materials Handbook Desk[M].Edition:American Society for Metals,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700