排气管内高压成形建模关键技术及其工艺参数研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Key modelling techniques and process parameters for hydroforming process of exhaust pipe
  • 作者:国宁 ; 刘宽心 ; 郑顺奇 ; 薛克敏
  • 英文作者:GUO Ning;LIU Kuanxin;ZHENG Shunqi;XUE Kemin;Hefei Institue of Technology;Ningbo Branch of Chinese Academy of Ordnance Science;
  • 关键词:内高压成形 ; 有限元模型 ; 成形参数 ; 正交试验
  • 英文关键词:hydroforming;;FE simulation model;;process parameter;;orthogonal experimental design
  • 中文刊名:BCKG
  • 英文刊名:Ordnance Material Science and Engineering
  • 机构:合肥工业大学;中国兵器科学研究院宁波分院;
  • 出版日期:2019-04-17 09:58
  • 出版单位:兵器材料科学与工程
  • 年:2019
  • 期:v.42;No.294
  • 基金:内蒙古自然科学基金(2016BS0517);; 浙江省基础公益研究计划项目(LQ18E040002);; 宁波市金属材料精密塑性成形重点实验室项目(2014A22003)
  • 语种:中文;
  • 页:BCKG201903023
  • 页数:6
  • CN:03
  • ISSN:33-1331/TJ
  • 分类号:83-88
摘要
采用有限元模拟和试验相结合是研究排气管内高压成形的重要手段。在解决关键技术的基础上基于ABAQUS有限元建立排气管三维有限元模型,并通过试验结果和模拟结果进行对比验证该模型的可靠性。结果表明:随着内压力、摩擦因数、整形压力、弹性模量以及加工硬化指数的增大,排气管件壁厚减薄增加;随着轴向进给量,以及各向异性指数的不断增加,内高压成形排气管件减薄率逐渐变小;采用正交试验方法最优因素水平组合μ为0.1,L为10 mm,P为100 MPa。
        It is an important way to investigate the hydroforming process of exhaust pipe by combining FE simulation and experiment. After solution of several key technical difficulties,a 3D FE simulation model for the hydroforming process of exhaust pipe was established,and it was validated to be credible and efficient. The result shows that with the increase of inner press,friction coefficient,deformation pressure,elastic modulus and hardening exponent,the thinning ratio increase;with the increase of the feeding amount and anisotropic index,the thinning ratio decreases. The optimal process parameters were determined as μ 0.1,L 10 mm,P 100 MPa by orthogonal experimental design.
引文
[1]AHMETOGLU M,SUTTER K,LI X J,et al.Tube hydroforming:current research,applications and need for training[J].Journal of Materials Processing Technology,2000,98(2):224-231.
    [2]VALENTE R,JORGE R N,ROQUE A P,et al.Simulation of dissimilar tailor-welded tubular hydroforming processes using EAS-based solid finite elements[J].International Journal of Advanced Manufacturing Technology,2008,37(7/8):670-689.
    [3]CHU G N,LIU G,LIU W J,et al.An approach to improve thickness uniformity within tailor-welded tube hydroforming[J].International Journal of Advanced Manufacturing Technology,2012,60(9/10/11/12):1247-1253.
    [4]HWANG Yeongmaw,LIN Yikai.Analysis and finite element simulation of the tube bulge hydroforming process[J].Journal of Materials Processing Technology,2002,125/126(9):821-825.
    [5]LANG L H,WANG Z R,KANGB D C,et al.Hydroforming highlights:Sheet hydroforming and tube hydroforming[J].Journal of Materials Processing Technology,2004,151(1/2/3):165-177.
    [6]KO?M,ALTAN T.An overall review of the tube hydroforming(THF)technology[J].Journal of Materials Processing Technology,2001,108(3):384-393.
    [7]KAYA S.Evaluating porthole and seamless aluminum tubes and lubricants for hydroforming[J].International Journal of Advanced Manufacturing Technology,2015,77(5/6/7/8):807-817.
    [8]SABOORI M,CHAMPLIAUD H,GHOLOPOUR J,et al.Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing[J].International Journal of Advanced Manufacturing Technology,2004,72(9/10/11/12):1275-1286.
    [9]ABDESSALEM A B,HAMI A E.Global sensitivity analysis and multi-objective optimisation of loading path in tube hydroforming process based on metamodelling techniques[J].International Journal of Advanced Manufacturing Technology,2014,71(5/6/7/8):753-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700