316L不锈钢循环特性的有限元分析及疲劳寿命预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:FINITE ELEMENT ANALYSIS OF CYCLIC PROPERTY AND FATIGUE LIFE PREDICTION FOR 316L STAINLESS STEEL
  • 作者:谭晶莹 ; 李江华 ; 邵宁 ; 金丹
  • 英文作者:TAN JingYing;LI JiangHua;SHAO Ning;JIN Dan;School of Mechanical Engineering,Hunan Institute of Science and Technology;School of Energy and Power Engineering,Shenyang University of Chemical Technology;
  • 关键词:316L不锈钢 ; 循环附加硬化 ; Abaqus软件 ; 混合模型 ; 疲劳寿命预测
  • 英文关键词:316L stainless steel;;Cyclic additional hardening;;ABAQUS software;;Mixing model;;Fatigue life prediction
  • 中文刊名:JXQD
  • 英文刊名:Journal of Mechanical Strength
  • 机构:湖南理工学院机械工程学院;沈阳化工大学能源与动力工程学院;
  • 出版日期:2017-04-15
  • 出版单位:机械强度
  • 年:2017
  • 期:v.39;No.190
  • 基金:国家自然科学基金项目(11102119);; 国家重点基础研究发展计划项目(2011CB706504);; 湖南省自然科学基金项目(13JJ6067)资助~~
  • 语种:中文;
  • 页:JXQD201702011
  • 页数:4
  • CN:02
  • ISSN:41-1134/TH
  • 分类号:72-75
摘要
针对316L奥氏体不锈钢进行了低周疲劳试验,采用有限元方法针对材料的循环特性进行了模拟计算。试验结果表明,该材料在不同应变范围下均表现出了明显的循环附加硬化,且硬化程度随着应变范围的增加而更为明显。在Abaqus模拟计算中,使用非线性随动强化与各向同性强化的混合模型描述材料弹塑性行为。不同应变范围下,模拟得到的第二周次下的应力应变曲线与实验结果吻合较好,模拟得到的前20周的最大应力与实验结果的误差与应变范围有关,最大平均误差为3.20%。基于实验结果和模拟结果,采用能量方法进行疲劳寿命预测,预测结果均位于两倍分散带内。
        Low cycle fatigue tests were carried for 316 L stainless steel and the material cyclic property was simulated by finite element method. The test results show that the significant cyclic additional hardening can be observed in different strain ranges and it is more evident with increase in strain range. The mixing model combined with the nonlinear kinematic hardening and the isotropic hardening is used to describe the elastic and plastic behavior. The simulation results of stress-strain agree well with the test results for the second cycle in different strain ranges. The error of the maximum stress for first 20 cycles between the simulation results and test results depends on the strain range and the maximum error is 3. 20%. The energy approach is used to predict the fatigue life based on the test results and simulation results and the prediction results are in a factor-2 scatter band.
引文
[1]Kim D W,Chang J H,Ryu W S,Evaluation of the creep-fatigue damage mechanism of Type 316L and Type 316LN stainless steel[J],International Journal of Pressure Vessels and Piping,2008,85:378-384.
    [2]Roy S C,Goyal S,Sandhya R,et al.Analysis of Hysteresis Loops of 316L(N)Stainless Steel under Low Cycle Fatigue Loading Conditions[J].Procedia Engineering.2013,55:165-170.
    [3]Roy S C,Goyal S,Sandhya R,et al.Low cycle fatigue life prediction of 316 L(N)stainless steel based on cyclic elasto-plastic response[J].Nuclear Engineering and Design.2012,253:219-225.
    [4]冯刚,宫大为,张朝阁,等.316L不锈钢的疲劳裂纹扩展行为试验[J].钢铁,2014,49(6):74-78.FENG Gang,GONG Da Wei,ZHANG Chao Ge,et al,Experiment of fatigue crack growth behavior of 316L stainless steel[J],Iron and Steel,2014,49(6):74-78(In Chinese).
    [5]Srinivasan V S,Valsan M,Sandhya R,et al.High temperature time-dependent low cycle fatigue behaviour of a type 316L(N)stainless steel[J].International Journal of Fatigue.1999,21:11-21.
    [6]Kim J W,Byun T S.Analysis of tensile deformation and failure in austenitic stainless steels:Part I-Temperature dependence[J].Journal of Nuclear Materials.2010,396:1-9.
    [7]金丹,王巍,田大将,等.非比例载荷下缺口件疲劳寿命有限元分析[J].机械工程学报,2014,50(12):25-29.JIN Dan,WANG Wei,TIAN Da Jiang,et al.Finite element analysis of fatigue life for notched specimen under nonproportional loading[J].Journal of Mechanical Engineering,2014,50(12):25-29(In Chinese).
    [8]邱宝象,高增梁,王效贵,等.基于有限元法的16MnR缺口件疲劳寿命预测方法[J].工程力学.2010,27(8):21-27.QIU Bao Xiang,GAO Zeng Liang,WANG Xiao Gui,et al.A fatigue life prediction method for 16MnR steel notched components based on the finite element method[J].Engineering Mechanics,2010,27(8):21-27(In Chinese).
    [9]Kim S K,Lee C S,Kim J H,et al.Computational evaluation of resistance of fracture capacity for SUS304L of liquefied natural gas insulation system under cryogenic temperatures using ABAQUS userdefined material subroutine[J].Materials and Design.2013,50:522-532.
    [10]Garud Y S.A new approach to the evaluation of fatigue under multiaxial loadings[J].Journal of Engineering Materials and Techonolgy,1981,103:118-126
    [11]陈刚,方加晔,金丹,等.316L不锈钢温度相关与非比例强化的粘塑性本构模拟[J].机械强度,2014,36(4):510-515.CHEN Gang,FANG Jia Ye,JIN Dan,et al,Viscoplastic constitutive modeling for temperature dependence and non-proportional hardening of 316L stainless steel[J],Journal of Mechanical Strength,2014,36(4):510-515(In Chinese).
    [12]Ye D Y,Matsuoka S,Nagashima N,et al.The low-cycle fatigue,deformation and final fracture behaviour of an austenitic stainless steel[J].Materials Science and Engineering A.2006,415(1-2):104-117.
    [13]Chaboche J L.Time independent constitutive theories for cyclic plasticity[J].International Journal of Plasticity,1986,2(2):149-188.
    [14]Koh S K.Fatigue damage evaluation of a high pressure tube using cyclic energy density[J].International Journal of Pressure Vessels and Piping,2002,79:791-798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700