人为踩踏生物土壤结皮对土壤酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Human Trampling Biocrusts on Soil Enzyme Activities
  • 作者:刘艳梅 ; 杨航宇 ; 贾荣亮 ; 李宜轩
  • 英文作者:Liu Yanmei;Yang Hangyu;Jia Rongliang;Li Yixuan;School of Biological Engineering and Technology, Tianshui Normal University;Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;College of Landscape Architecture, Gansu Agricultural University;Gansu Forestry Technology College;College of Agriculture, Shenyang Agricultural University;
  • 关键词:生物土壤结皮 ; 人为踩踏 ; 踩踏程度 ; 结皮发育阶段 ; 土壤酶活性
  • 英文关键词:biocrusts;;human trampling;;trampling degree;;successional stage of crusts;;soil enzyme activity
  • 中文刊名:ZGSS
  • 英文刊名:Journal of Desert Research
  • 机构:天水师范学院生物工程与技术学院;中国科学院西北生态环境资源研究院沙坡头沙漠试验研究站;甘肃农业大学园林工程学院;甘肃林业职业技术学院;沈阳农业大学农学院;
  • 出版日期:2019-01-17 09:57
  • 出版单位:中国沙漠
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41761057);; 2018年甘肃省陇原青年创新创业人才项目;; 甘肃省自然科学基金项目(1610RJZE133);; 甘肃省高等学校科研项目(2017A-189);; 中国科学院西北生态环境资源研究院“中国科学院大学生创新实践训练计划”项目
  • 语种:中文;
  • 页:ZGSS201904007
  • 页数:10
  • CN:04
  • ISSN:62-1070/P
  • 分类号:57-66
摘要
土壤酶活性是衡量荒漠区生态恢复程度的重要生物学指标。为揭示人为踩踏生物土壤结皮对土壤质量的影响,分别采集腾格里沙漠植被固沙区未踩踏、中度踩踏和重度踩踏结皮下0~5 cm和5~15 cm土样并测定土壤脲酶、转化酶、过氧化氢酶、脱氢酶、碱性磷酸酶和蛋白酶的活性,通过土壤酶活性反映人为踩踏对荒漠区土壤质量的影响。结果表明:人为踩踏藻-地衣和藓类结皮可导致土壤脲酶、转化酶、过氧化氢酶、脱氢酶、碱性磷酸酶和蛋白酶活性的降低,且这些土壤酶活性与踩踏程度呈线性负相关。除踩踏程度外,土壤酶活性也受结皮发育阶段和土壤深度的影响;人为踩踏的藓类结皮下6种土壤酶的活性显著高于踩踏藻-地衣结皮(P<0.05),表明演替晚期的藓类结皮比早期的藻-地衣结皮具有更强的抗踩踏干扰能力;踩踏生物土壤结皮下0~5 cm土层的土壤酶活性显著高于5~15 cm土层(P<0.05)。此外,无论季节更替,土壤酶活性均表现为未踩踏>中度踩踏>重度踩踏,且踩踏或未踩踏结皮下土壤酶活性均表现明显的季节变化,夏季最高、秋季次之、春季再次之、冬季最低。腾格里沙漠人工植被区和天然植被区人为踩踏生物土壤结皮可降低土壤酶活性,表明踩踏生物土壤结皮可导致土壤质量下降和荒漠生态系统的退化。保护荒漠区的生物土壤结皮将有利于该区土壤及荒漠生态系统的恢复。
        Soil enzymes may act as important biological properties in measuring ecological restoration in desert areas. In order to investigate the effects of human trampling to biocrusts on soil quality, sandy soil under human trampling to biocrusts was served as the research object in artificial and natural vegetation areas at the southeastern edge of the Tengger Desert. Trampling to biocrusts was divided into three levels depending on trampling levels to biocrusts: non-trampling, medium trampling and severe trampling to biocrusts, respectively. Soil samples were taken from 0~5 cm and 5~15 cm soil depth, respectively and soil urease, invertase, catalase, dehydrogenase, alkaline phosphatase and protease activities were measured. Soil quality could be indicated by these soil enzymes activities in desert areas. The results showed that human trampling to cyanobacteria-lichen and moss crusts reduced activities of soil urease, invertase, catalase, dehydrogenase, alkaline phosphatase and protease. Moreover, these soil enzyme activities have a linear negative correlation with trampling degree of biocrusts. In addition to the trampling degree, the studied enzymes activities following trampling biocrusts were significantly influenced by successional stages of crust and soil depth(P<0.05). The studied enzymes activities under trampled moss crusts were significantly higher than cyanobacteria-lichen crusts. This result indicated that late-stage moss crusts had more stronger anti-interference capability than early-stage cyanobacteria-lichen crusts(P<0.05). The six studied enzymes activities under trampled biocrusts in 0~5 cm soil layer were significantly greater than 5~15 cm soil layer. In addition, there was a consistent law of soil enzyme activities under biocrusts no matter how seasons change, follow orders: non-trampling biocrusts>medium-trampling biocrusts =>severe-trampling biocrusts. Moreover, seasonal changes of soil enzyme activities under trampling or non-trampling biocrusts was obvious which from maximum to minimum is summer, autumn, spring and winter. Therefore, human trampling to biocrusts could decrease soil enzyme activity in artificial and natural vegetation areas at southeastern edge of the Tengger Desert, indicating a reduction of soil quality and the degradation of desert ecosystem. The results indicated that the protection to biocrusts is beneficial to the recovery of sandy soil and desert ecological system.
引文
[1] West N E.Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J].Advances in Ecological Research,1990,20:179-223.
    [2] Belnap J,Lange O L.Biological soil crust:Structure,Function and Management[M].Berlin,Germany:Springer-Verlag,2003.
    [3] 李新荣.荒漠生物土壤结皮生态与水文学研究[M].北京:高等教育出版社,2016.
    [4] Liu Y M,Xing Z S,Yang H Y.Effect of biological soil crusts on microbial activity in soils of the Tengger Desert (China)[J].Journal of Arid Environments,2017,144:201-211.
    [5] Gómez D A,Aranibar J N,Tabeni S,et al.Biological soil crust recovery after long-term grazing exclusion in the Monte Desert (Argentina).Changes in coverage,spatial distribution,and soil nitrogen[J].Acta Oecologica,2012,38:33-40.
    [6] 梁少民,吴楠,王红玲,等.干扰对生物土壤结皮及其理化性质的影响[J].干旱区地理,2005,28(6):818-823.
    [7] Herrick J E,Van Zee J W,Belnap J,et al.Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts[J].Catena,2010,83:119-126.
    [8] 石亚芳,赵允格,李晨辉,等.踩踏干扰对生物结皮土壤渗透性的影响[J].应用生态学报,2017,28(10):3227-3234.
    [9] Tabatabai M A.Soil enzymes[M]//Page A L,Miller R H,Keeney D R.Methods of Soil Analysis.Madison,USA:American Society of Agronomy,1994:775-833.
    [10] Lebrun J D,Trinsoutrot-Gattin I,Vinceslas-Akpa M,et al.Assessing impacts of copper on soil enzyme activities in regard to their natural spatiotemporal variation under long-term different land uses[J].Soil Biology & Biochemistry,2012,49:150-156.
    [11] Liu Y M,Yang H Y,Li X R,et al.Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert,China[J].Applied Soil Ecology,2014,80:6-14.
    [12] Belnap J.Soil surface disturbances in cold deserts:effects on nitrogenase activity in cyanobacterial-lichen soil crusts[J].Biology and Fertility of Soils,1996,23:362-367.
    [13] Belnap J.Impacts of off-road vehicles on nitrogen cycles in biological soil crusts:resistance in different U.S.deserts[J].Journal of Arid Environments,2002,52:155-165.
    [14] 杨航宇,刘艳梅,王廷璞,等.生物土壤结皮对荒漠区土壤微生物数量和活性的影响[J].中国沙漠,2017,37(5):950-960.
    [15] Li X R,Zhang P,Su Y G,et al.Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China:a four-year field study[J].Catena,2012,97:119-126.
    [16] 关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986:260-344.
    [17] 吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [18] 程军回,张元明.影响生物土壤结皮分布的环境因子[J].生态学杂志,2010,29(1):133-141.
    [19] 李新荣,贾玉奎,龙利群.干旱半干旱地区土壤微生物土壤结皮的生态学意义及若干研究进展[J].中国沙漠,2001,21(1):4-12.
    [20] Bergstrom D W,Monreal C M,King D J.Sensitivity of soil enzyme activities to conservation practices[J].Soil Science Society of America Journal,1998,62(5):1286-1295.
    [21] Trasar C,Leirós M C,Gil S F.Hydrolytic enzyme activities in agricultural and forest soils.Some implications for their use as indicators of soil quality[J].Soil Biology & Biochemistry,2008,40(9):2146-2155.
    [22] Eldridge D J,Rosentreter R.Morphological groups:a framework for monitoring microphytic crusts in arid landscapes[J].Journal of Arid Environment,1999,41:11-25.
    [23] 都军,李宜轩,杨晓霞,等.腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响[J].中国沙漠,2018,38(1):111-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700