固态锂电池界面问题的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on interfacial issues of solid state lithium batteries
  • 作者:毕志杰 ; 赵宁 ; 石川 ; 郭向欣
  • 英文作者:BI Zhi-jie;ZHAO Ning;SHI Chuan;GUO Xiang-xin;College of Physics, Qingdao University;
  • 关键词:固态锂电池 ; 固体电解质 ; 界面调控 ; 锂镧锆氧 ; 能量密度
  • 英文关键词:solid state lithium batteries;;solid state electrolytes;;interfaces manipulation;;LLZO;;energy density
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:青岛大学物理科学学院;
  • 出版日期:2019-04-20
  • 出版单位:电源技术
  • 年:2019
  • 期:v.43;No.343
  • 基金:国家自然科学基金(51532002,51771222,2180050937);; 中国博士后基金(2018M632617);; 山东省自然科学基金(ZR2017021-80185)
  • 语种:中文;
  • 页:DYJS201904002
  • 页数:7
  • CN:04
  • ISSN:12-1126/TM
  • 分类号:9-15
摘要
与传统锂离子电池相比,基于固体电解质的固态锂电池具有能量密度高、循环寿命长及安全可靠等特点,是当今能源存储领域的研究热点之一,未来有望在电动汽车和便携电子设备等领域得到广泛应用。固体电解质内部界面决定了电解质的离子电导率;与固液界面相比,固态锂电池中电极与固体电解质之间形成的固固界面具有更高的接触电阻,同时,界面相容性和界面稳定性显著影响固态锂电池的循环性能和倍率性能。因此,解决固态锂电池中的界面问题是取得电池性能根本性突破的关键因素。介绍了本研究团体在基于锂镧锆氧(LLZO)固体电解质的固态锂电池中不同界面问题的研究进展,并对固态锂电池中界面调控及优化做出展望。
        Compared with traditional lithium ion batteries, the solid state lithium batteries based on solid state electrolytes with features of large energy density, long cycle life and high safe reliability are one of the research hotspots in the field of energy storage. Solid state lithium batteries would be widely used in electric vehicles and portable electronics in the future. The ion conductivity is determined by the internal interface of the solid state electrolyte. Compared with the solid-liquid interfaces, the formed solid-solid interfaces between electrodes and solid electrolytes in the solid batteries exhibit higher contact resistance. Meanwhile, the interface compatibility and stability markedly affect the cycle stability and rate capability of solid state lithium batteries. Therefore, solving the interfaces issues in solid state lithium batteries is critical for realizing high performance. The research progress of various interfacial issues on solid state lithium batteries based on LLZO electrolytes was reviewed, and the perspective on the interfacial manipulation and optimization for solid state lithium batteries was prospected.
引文
[1] WANG J, ZHANG L, YU L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications[J]. Nat Commun, 2014, 5:4921.
    [2] CONG S, TIAN Y, LI Q, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications[J]. Adv Mater, 2014, 26(25):4260-4267.
    [3] CHENG G, XU J, DONG C, et al. Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors[J]. J Mater Chem A, 2014, 2(41):17307-17313.
    [4] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Adv Mater, 2018, 30(33):1800561.
    [5] BACHMAN J, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries:Mechanisms and properties governing ion conduction[J]. Chem Rev, 2016, 116(1):140-162.
    [6] TAO X, LIU Y, LIU W, et al. Solid-state lithium-sulfur batteries operated at 37 degrees C with composites of nanostructured Li7La3-Zr2O12/carbon foam and polymer[J]. Nano Lett, 2017, 17(5):2967-2972.
    [7] WANG L, ZHANG X, WANG T, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018,8(24):1801528.
    [8] LI Y, WANG Z, LI C, et al. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering[J]. Journal of Power Sources, 2014, 248:642-646.
    [9] LI Y, WANG Z, CAO Y, et al. W-doped Li7La3Zr2O12ceramic electrolytes for solid state Li-ion batteries[J]. Electrochimica Acta, 2015,180:37-42.
    [10] DU F, ZHAO N, LI Y, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources, 2015, 300:24-28.
    [11] ZHANG J, ZHAO N, ZHANG M, et al.Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries:Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28:447-454.
    [12] ZHAO N, FANG R, HE M, et al. Cycle stability of lithium/garnet/lithium cells with different intermediate layers[J]. Rare Metals,2018, 37(6):473-479.
    [13] PENG Z, ZHAO N, ZHANG Z, et al. Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains[J]. Nano Energy, 2017, 39:662-672.
    [14] CHEN C, LI Q, LI Y,et al.Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries[J]. ACS Appl Mater Interfaces, 2018, 10(2):2185-2190.
    [15] DU F M,ZHAO N,FANG R, et al. Influence of electronic conducting additives on cycle performance of garnet-based solid lithium batteries[J]. Journal of Inorganic Materials, 2018, 33(4):462-468.
    [16] HAN F D, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3):497-508.
    [17] HUO H, ZHAO N, SUN J, et al.Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for roomtemperature solid-state lithium battery[J]. Journal of Power Sources,2017, 372:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700