低压比煤油涡轮数值计算与优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation and Optimal Design for Kerosene-Based Turbine with Low Pressure Ratio
  • 作者:金烜 ; 沈赤兵 ; 吴先宇 ; 田正雨
  • 英文作者:JIN Xuan;SHEN Chi-bing;WU Xian-yu;TIAN Zheng-yu;College of Aerospace Science and Engineering,National University of Defense Technology;Science and Technology on Scramjet Laboratory,National University of Defense Technology;
  • 关键词:膨胀循环超燃冲压发动机 ; 涡轮 ; 超临界/裂解态煤油 ; 数值计算 ; 优化设计
  • 英文关键词:Scramjet with expansion cycle;;Turbine;;Supercritical/cracking kerosene;;Numerical simulation;;Optimal design
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:国防科学技术大学航天科学与工程学院;国防科学技术大学高超声速冲压发动机技术重点实验室;
  • 出版日期:2017-11-09 18:19
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.247
  • 基金:国家自然科学基金(11272344;11572346)
  • 语种:中文;
  • 页:TJJS201801006
  • 页数:9
  • CN:01
  • ISSN:11-1813/V
  • 分类号:64-72
摘要
小流量煤油涡轮泵可用于膨胀循环超燃冲压发动机燃料供应系统,针对特定工况提出了超临界/裂解态煤油基低压比涡轮的数值计算方法和优化设计策略。根据液体火箭发动机中典型的涡轮设计方法获得了低压比煤油涡轮的设计方案,采用湍流模拟方法结合煤油的多组分代理模型对25kr/min转速下的涡轮内部超临界态流动进行数值计算,发现设计方案的轴功率超过所需轴功率的120%,不利于涡轮泵系统在设计点工况下的稳定运转。取涡轮轴功率大于所需轴功率为约束条件,选择涡轮结构尺寸为设计变量,以两个目标量(优化方案的轴功率和效率相对于设计方案的变化率)的加权函数值最大为目标,基于响应面模型和多岛遗传算法开展渐进优化,优化过程中采用i SIGHT平台集成了3维参数化建模和流场仿真等C++程序和软件以实现数值计算自动化。利用试验设计方法建立样本数据库,并进行了涡轮轴功率和效率关于设计变量的灵敏度分析,发现二者成合作关系;所得涡轮优化方案的两个目标量分别下降16.5%和2.9%,以较低的效率损失为代价实现了轴功率的良好配合。
        Kerosene-based turbo-pump with small flow rate is highly possible to be applied to the fuel supply system of expansion cycle scramjet. A method of numerical simulation and optimal design for supercritical/cracking kerosene-based turbine with low pressure ratio under interested conditions was proposed. Turbine design scheme was obtained according to the classic technology in liquid rocket engines. Turbulence simulation combined with a multi-species kerosene surrogate model was employed to study objective characteristics by simulating supercritical flow inside the turbine at 25 kr/min. Shaft power of turbine design scheme is 20% higher than the required value,which has an adverse effect on the stable operation of turbo-pump. Constraint that turbine shaft power must be higher than the required value was employed. Structure parameters of turbine were chosen as design variables. Shaft power and efficiency are the performance parameters for turbine,and the optimization objective is to maximize the given weighted combination of two target variables(the variation of shaft power and efficiency comparing to design scheme). A successive optimization process based on Response Surface Model and Multi-Island Genetic Algorithm was implemented to obtain an optimized turbine scheme. The C++ program and software for 3 D parametric modeling and flow field simulation were integrated within i SIGHT platform to realize an automation process for numerical simulation. The sample database was built on a basis of the Design of Experiment method,then parametric sensitivity was analyzed carefully,which indicates that most design variables have same effects on shaft power and efficiency. Comparing with design scheme,shaft power and efficiency of the optimized scheme decrease by 16.5% and 2.9% respectively,where the former one is basically consistent with the required value at a low price of the later.
引文
[1]Bahm C,Baumann E,Martin J,et al.The X-43A Hyper-X Mach 7 Flight 2 Guidance,Navigation,and Control Overview and Flight Test Results[C].Reston:13th International Space Planes and Hypersonics Systems and Technologies,2005.
    [2]Marshall L A,Bahm C,Corpening G P,et al.Overview with Results and Lessons Learned of the X-43A Mach 10 Flight[C].Reston:AIAA Guidance,Navigation and Control Conference and Exhibit,2005.
    [3]Mutzman R,Murphy S.X-51 Development:A Chief Engineer's Perspective[C].Francisco:17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2011.
    [4]Shen C B,Wu X Y,Chen X F.Study on the Thermodynamic Cycle Characteristics of the Scramjet Fuel Feed System[C].Toronto:65st International Astronautical Congress,2014.
    [5]Zhang H,Shen C B,Wu X Y.Design and Optimization of Hydrocarbon-Fueled Scramjet Start-Up Scheme with Expansion Cycle[C].Cape Town:62st International Astronautical Congress,2011.
    [6]刘国球.液体火箭发动机原理[M].北京:中国宇航出版社,1993.
    [7]刘晓波,孙宗祥,钟萍,等.国外航空发动机空气动力学研究概况[J].燃气涡轮试验与研究,2013,26(4).
    [8]Fasel H F,Balzer W,Gross A.Numerical Investigation of Active Control for Low-Pressure Turbine Blades[R].NASA/CP 2006-214484.
    [9]Paul W G.NASA/GE Highly-Loaded Turbine Research Program[C].Cleveland:AIAA Turbine Engine Testing Working Group Meeting,2008.
    [10]查小晖,郑群,高杰,等.弧形端壁造型对不带冠涡轮气动性能的影响[J].推进技术,2014,35(6):779-787.(ZHA Xiao-hui,ZHENG Qun,GAO Jie,et al.Effects of Arcing Endwall Contouring on Aerodynamic Performances of an Unshrouded Axial Turbine[J].Journal of Propulsion Technology,2014,35(6):779-787.)
    [11]赖巍,李剑白,张剑.基于参数敏感性的涡轮平面叶栅多目标优化设计[J].燃气涡轮试验与研究,2015,28(1):54-59.
    [12]张剑,曾军,葛宁,等.涡轮三维叶片气动优化设计集成及应用[J].燃气涡轮试验与研究,2015,28(3):1-7.
    [13]虞跨海,杨茜,倪俊,等.基于晌应面的涡轮叶片冷却通道设计优化[J].航空学报,2009,30(9):1630-1634.
    [14]张春宜,宋鲁凯,费成巍,等.基于智能双重响应面法的涡轮叶盘可靠性灵敏度分析[J].推进技术,2017,38(5):1155-1164.(ZHANG Chun-yi,SONG LU-kai,FEI Cheng-wei,et al.Intelligent Dual Response Surface Method for Reliability Sensitivity Analysis of Turbine Blisk[J].Journal of Propulsion Technology,2017,38(5):1155-1164.)
    [15]罗磊,卢少鹏,迟重然,等.气热耦合条件下涡轮动叶叶型与冷却结构优化[J].推进技术,2014,35(5):603-609.(LUO Lei,LU Shao-peng,CHI Zhong-ran,et al.Conjugate Heat Transfer Optimization for Blade Profiles and Cooling Structure in Turbine Rotor[J].Journal of Propulsion Technology,2014,35(5):603-609.)
    [16]贾志刚,王荣桥,胡殿印.流固耦合在涡轮多学科优化设计中的应用[J].航空学报,2013,34(12):2777-2784.
    [17]Wu X Y,Yang J,Zhang H,et al.System Design and Analysis of Hydrocarbon Scramjet with Regeneration Cooling and Expansion Cycle[J].Journal of Thermal Science,2015,24(4):350-355.
    [18]金烜.膨胀循环超燃冲压发动机系统工作特性研究[D].长沙:国防科学技术大学研究生院,2016,27-31.
    [19]刘国球.液体火箭发动机设计(下)[M].北京:中国宇航出版社,1993.
    [20]阮波.超临界压力下正癸烷裂解吸热和对流传热现象的数值模拟研究[D].杭州:浙江大学,2013.
    [21]孙青梅,米镇涛,张香文.吸热型碳氢燃料RP-3仿JP-7临界性质(tc,pc)的测定[J].燃料化学学报,2006,34(4):466-470.
    [22]Ward T A,Ervin J S,Zabarnick S.Pressure Effect on Flowing Mildly-Cracked N-Decane[J].Journal of Propulsion and Power,2005,21(2):344-355.
    [23]Ely J F,Hanley J M.Prediction of Transport Properties.1.Viscosity of Fluids and Mixtures[J].Industrial&Engineering Chemistry Fundamentals,1981,20(4):323-332.
    [24]Ely J F,Hanley J M.Prediction of Transport Properties.2.Thermal Conductivity of Pure Fluids and Mixtures[J].Industrial&Engineering Chemistry Fundamentals,1983,22(1):90-97.
    [25]Meng H,Yang V.A Unified Treatment of General Fuid Thermodynamics and Its Application to a Preconditioning Scheme[J].Journal of Computational Physics,2003,189(1):277-304.
    [26]Meng H,Hsiao G C,Yang V,et al.Transport and Dynamics of Liquid Oxygen Droplets in Supercritical Hydrogen Streams[J].Journal of Fluid Mechanics,2005,527:115-139.
    [27]Tan L,Zhu B S,Cao S L,et al.Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump[J].Energies,2014,7(2):1050-1065.
    [28]王大磊,邵伏永,郭昊雁,等.翼梢小翼对涡轮间隙泄漏流动影响的数值研究[J].推进技术,2014,35(3):341-346.(WANG Da-lei,SHAO Fu-yong,GUO Hao-yan,et al.Study of Tip Winglets on Leakage Flow in a Transonic Turbine Stage[J].Journal of Propulsion Technology,2014,35(3):341-346.)
    [29]Wu X Y,Jin L,Luo S B,et al.Multidisciplinary Design and Optimization of Hypersonic Glider wth Scramjet Propulsion[C].Gothenburg:20th International Symposium on Air-Breathing Engine,2011.
    [30]卢少鹏,迟重然,罗磊,等.气热耦合条件下涡轮静叶三维优化[J].推进技术,2014,35(3):356-364.(LU Shao-peng,CHI Zhong-ran,LUO Lei,et al.Conjugate Heat Transfer 3-D Optimization for Turbine Stator[J].Journal of Propulsion Technology,2014,35(3):356-364.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700