黑潮延伸体区域脱落涡旋的时空特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and spatial characteristics of pinch-off rings in the Kuroshio Extension region
  • 作者:丁雅楠 ; 靖春生 ; 邱云
  • 英文作者:Ding Ya'nan;Jing Chunsheng;Qiu Yun;Third Institute of Oceanography, Ministry of Natural Resources;
  • 关键词:黑潮延伸体 ; 脱落涡旋 ; 时空特征 ; 季节变化 ; 年际和类年代际变化
  • 英文关键词:Kuroshio Extension;;pinch-off ring;;temporal and spatial characteristics;;seasonal variability;;interannual to decadal variability
  • 中文刊名:SEAC
  • 机构:自然资源部第三海洋研究所;
  • 出版日期:2019-05-07
  • 出版单位:海洋学报
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划(2016YFC1402607);; 全球变化与海气相互作用专项项目(GASI-IPOVAI-02,GASI-IPOVAI-03);; 国家海洋局第三海洋研究所基本科研业务费专项资金资助(海三科2018001,海三科2017012)
  • 语种:中文;
  • 页:SEAC201905005
  • 页数:12
  • CN:05
  • ISSN:11-2055/P
  • 分类号:51-62
摘要
本文利用1993-2015年AVISO卫星高度计融合数据,统计分析了从黑潮延伸体流轴脱落涡旋的空间分布特征、运动属性以及季节、年际和类年代际变化。研究结果表明,23年间共追踪到242个气旋涡,276个反气旋涡,脱落的涡旋主要分布在沙茨基海隆以西区域。从脱落涡旋的源地空间分布来看,气旋涡的形成区域有两个高值区,一个位于黑潮延伸体流轴稳定弯曲处,即144°~146°E之间的上游区域;另一个位于沙茨基海隆西侧156°E处。而反气旋涡的形成区域也有两个高值区,一个位于沙茨基海隆以西的下游区域,另一个位于148°E处。这些在上游和下游脱落的涡旋大多向西移动,其中有88%的涡旋再次被流轴吸收。脱落涡旋的数量显示出了明显的年际和类年代际变化。在流轴的上下游区域,类年代际和年际变化分别占主导地位。并且在上游区域,脱落涡旋的类年代际变化与黑潮延伸体的强度呈负相关。在季节变化上,夏季脱落形成的涡旋最多,冬季最少。
        This study examined the spatial distribution characteristics, motion properties, seasonal, interannual and decadal variations of oceanic rings shed from the Kuroshio Extension(KE) jet using AVISO satellite altimeter observations from January 1993 to December 2015. The results show that 242 cyclones and 276 anticyclones are detected in the past 23 years, and pinch-off rings mostly distribute in the region west of the Shatsky Rise. According to the spatial distribution of the ring formations in the KE region, there are two high value regions of cyclonic rings. One is located at the upstream region between 144°-146°E around the steady meander of the KE jet, the other is located at 156°E west of the Shatsky Ridge. There are two high value regions of anticyclonic rings, one located at downstream region west of the Shatsky Ridge and the other located at 148°E. These pinched-off rings in both the upstream and downstream regions generally propagated westward, but about 88% of the rings are reabsorbed by the jet. The number of ring formations show substantial interannual to decadal-like variability. In the upstream and downstream KE region, decadal-like and interannual variability is dominant, respectively. In the upstream region, these fluctuations of the ring formations are negatively correlated with the strength of the KE jet. In terms of seasonal variation, the most rings formed in summer, and the least in winter.
引文
[1] Qiu B.Kuroshio extension variability and forcing of the Pacific decadal oscillations:responses and potential feedback[J].Journal of Physical Oceanography,2003,33(12):2465-2482.
    [2] 张笑,贾英来,沈辉,等.黑潮延伸体区域海洋涡旋研究进展[J].气候变化研究快报,2013,2(1):1-8.Zhang Xiao,Jia Yinglai,Shen Hui,et al.Review on mesoscale eddy studies in the Kuroshio extension region[J].Climate Change Research Letters,2013,2(1):1-8.
    [3] Wyrtki K,Magaard L,Hager J.Eddy energy in the oceans[J].Journal of Geophysical Research,1976,81(15):2641-2646.
    [4] Stammer D.On eddy characteristics,eddy transports,and mean flow properties[J].Journal of Physical Oceanography,1998,28(4):727-739.
    [5] Qiu Bo,Chen Shuiming.Eddy-induced heat transport in the subtropical North Pacific from Argo,TMI,and altimetry measurements[J].Journal of Physical Oceanography,2005,35(4):458-473.
    [6] Aoki K,Minobe S,Tanimoto Y,et al.Southward eddy heat transport occurring along southern flanks of the Kuroshio extension and the gulf stream in a 1/10° global ocean general circulation model[J].Journal of Physical Oceanography,2013,43(9):1899-1910.
    [7] Olson D B.Rings in the ocean[J].Annual Review of Earth and Planetary Sciences,1991,19(1):283-311.
    [8] Waterman S,Hoskins B J.Eddy shape,orientation,propagation,and mean flow feedback in western boundary current jets[J].Journal of Physical Oceanography,2013,43(8):1666-1690.
    [9] Kawamura H,Mizuno K,Toba Y.Formation process of a warm-core ring in the Kuroshio-Oyashio frontal zone—December 1981-October 1982[J].Deep Sea Research Part A.Oceanographic Research Papers,1986,33(11/12):1617-1640.
    [10] Oka E,Suga T,Sukigara C,et al.“Eddy resolving” observation of the north pacific subtropical mode water[J].Journal of Physical Oceanography,2010,41(4):666-681.
    [11] Yasuda I,Okuda K,Hirai M.Evolution of a Kuroshio warm-core ring—variability of the hydrographic structure[J].Deep Sea Research Part A.Oceanographic Research Papers,1992,39(S1):S131-S161.
    [12] Qiu Bo,Chen Shuiming,Hacker P.Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio extension system study (KESS)[J].Journal of Physical Oceanography,2007,37(4):982-1000.
    [13] Sugimoto S,Hanawa K.Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio confluence region:influences of warm eddies detached from the Kuroshio extension[J].Journal of Climate,2011,24(24):6551-6561.
    [14] Chelton D B,Schlax M G,Samelson R M,et al.Global observations of large oceanic eddies[J].Geophysical Research Letters,2007,34(15):L15606.
    [15] Itoh S,Yasuda I.Characteristics of mesoscale eddies in the kuroshio-oyashio extension region detected from the distribution of the sea surface height anomaly[J].Journal of Physical Oceanography,2010,40(5):1018-1034.
    [16] Kouketsu S,Tomita H,Oka E,et al.The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific[J].Journal of Oceanography,2012,68(1):63-77.
    [17] Mcwilliams J C,Flierl G R.On the evolution of isolated,nonlinear vortices[J].Journal of Physical Oceanography,1979,9(9):1155-1182.
    [18] Chelton D B,Schlax M G,Samelson R M.Global observations of nonlinear mesoscale eddies[J].Progress in Oceanography,2011,91(2):167-216.
    [19] Cushman-Roisin B.Trajectories in gulf stream meanders[J].Journal of Geophysical Research:Oceans,1993,98(C2):2543-2554.
    [20] McGillicuddy D J Jr,Anderson L A,Bates N R,et al.Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J].Science,2007,316(5827):1021-1026.
    [21] Sasaki Y N,Minobe S.Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region[J].Journal of Oceanography,2015,71(5):499-509.
    [22] Deser C,Alexander M,Timlin M S.Evidence for a wind-driven intensification of the Kuroshio current extension from the 1970s to the 1980s[J].Journal of Climate,1999,12(6):1697-1706.
    [23] Taguchi B,Xie S P,Schneider N,et al.Decadal variability of the Kuroshio extension:observations and an eddy-resolving model hindcast[J].Journal of Climate,2007,20(3):673-691.
    [24] Sasaki Y N,Minobe S,Schneider N.Decadal response of the Kuroshio extension jet to Rossby waves:observation and thin-jet theory[J].Journal of Physical Oceanography,2013,43(2):442-456.
    [25] Qiu Bo,Chen Shuiming.Variability of the Kuroshio extension jet,recirculation gyre,and mesoscale eddies on decadal time scales[J].Journal of Physical Oceanography,2005,35(11):2090-2103.
    [26] 王鼎琦,方国洪,邱婷.吕宋海峡黑潮脱落涡旋的特征分析[J].海洋与湖沼,2017,48(4):672-681.Wang Dingqi,Fang Guohong,Qiu Ting.The characteristics of eddies shedding from Kuroshio in the Luzon Strait[J].Oceanologia et Limnologia Sinica,2017,48(4):672-681.
    [27] 杨光.西北太平洋中尺度涡旋研究[D].青岛:中国科学院海洋研究所,2013.Yang Guang.A study on the mesoscale eddies in the northwestern Pacific Ocean[D].Qingdao:Insitude of Oceanology,Chinese Academy of Sciences,2013.
    [28] Dickey T D,Nencioli F,Kuwahara V S,et al.Physical and bio-optical observations of oceanic cyclones west of the island of Hawai’i[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2008,55(10/13):1195-1217.
    [29] 祖永灿,方越,高晓倩,等.北太平洋中尺度涡季节和年际变化的统计分析[J].海洋科学进展,2016,34(2):197-206.Zu Yongcan,Fang Yue,Gao Xiaoqian,et al.Seasonal and interannual variation of mesoscale eddies in the North Pacific Ocean:a statistical analysis[J].Advance in Marine Science,2016,34(2):197-206.
    [30] Chelton D B,Schlax M G.The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets[J].Journal of Atmospheric & Oceanic Technology,2003,20(9):1276-1302.
    [31] 崔伟,王伟,马毅,等.基于1993-2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J].海洋学报,2017,39(2):16-28.Cui Wei,Wang Wei,Ma Yi,et al.Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993-2014 based on altimetry data[J].Haiyang Xuebao,2017,39(2):16-28.
    [32] Nakano H,Tsujino H,Sakamoto K.Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model[J].Journal of Geophysical Research:Oceans,2013,118(10):5461-5488.
    [33] Chao S Y.Zonal jets over topography on a beta-plane,with applications to the Kuroshio extension over the shatsky rise[J].Journal of Physical Oceanography,1994,24(7):1512-1531.
    [34] Hurlburt H E,Metzger E J.Bifurcation of the Kuroshio extension at the shatsky rise[J].Journal of Geophysical Research:Oceans,1998,103(C4):7549-7566.
    [35] Nishihama Y,Ikeda M.Instability processes of mesoscale features in the Kuroshio Extension reproduced through assimilation of altimeter data into a quasi-geostrophic model using the variational method[J].Journal of Oceanography,2013,69(2):135-146.
    [36] Fujii Y,Nakano T,Usui N,et al.Pathways of the North Pacific Intermediate Water identified through the tangent linear and adjoint models of an ocean general circulation model[J].Journal of Geophysical Research:Oceans,2013,118(4):2035-2051.
    [37] Chen Gengxin,Hou Yujun,Chu Xiaoqing.Mesoscale eddies in the South China Sea:Mean properties,spatiotemporal variability,and impact on thermohaline structure[J].Journal of Geophysical Research:Oceans,2011,116(C6):C06018.
    [38] Scharffenberg M G,Stammer D.Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data[J].Journal of Geophysical Research:Oceans,2010,115(C2):C02008.
    [39] Tai C K,White W B.Eddy variability in the Kuroshio extension as revealed by geosat altimetry:energy propagation away from the jet,Reynolds stress,and seasonal cycle[J].Journal of Physical Oceanography,1990,20(11):1761-1777.
    [40] Qiu B.Recirculation and seasonal change of the Kuroshio from altimetry observations[J].Journal of Geophysical Research:Oceans,1992,97(C11):17801-17811.
    [41] Greatbatch R J,Zhai Xiaoming,Kohlmann J D,et al.Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio extensions as revealed by satellite data[J].Ocean Dynamics,2010,60(3):617-628.
    [42] Mizuno K,White W B.Annual and interannual variability in the Kuroshio current system[J].Journal of Physical Oceanography,1983,13(10):1847-1867.
    [43] Tatebe H,Yasuda I.Seasonal axis migration of the upstream Kuroshio extension associated with standing oscillations[J].Journal of Geophysical Research:Oceans,2001,106(C8):16685-16692.
    [44] Bush A B G,Mcwilliams J C,Peltier W R.The formation of oceanic eddies in symmetric and asymmetric jets.Part Ⅰ:early time evolution and bulk eddy transports[J].Journal of Physical Oceanography,2010,25(9):1959-1979.
    [45] Yang Yang,Liang X S,Qiu Bo,et al.On the decadal variability of the eddy kinetic energy in the Kuroshio extension[J].Journal of Physical Oceanography,2017,47(5):1169-1187.
    [46] Qiu Bo,Chen Shuiming.Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2010,57(13/14):1098-1110.
    [47] Qiu Bo,Chen Shuiming,Wu Lixin,et al.Wind-versus eddy-forced regional sea level trends and variability in the North Pacific Ocean[J].Journal of Climate,2015,28(4):1561-1577.
    [48] Qiu Bo,Chen Shuiming,Schneider N,et al.A coupled decadal prediction of the dynamic state of the Kuroshio extension system[J].Journal of Climate,2014,27(4):1751-1764.
    [49] Liang X S,Robinson A R.Localized multi-scale energy and vorticity analysis:Ⅱ.Finite-amplitude instability theory and validation[J].Dynamics of Atmospheres and Oceans,2007,44(2):51-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700