土壤中萘降解菌的耐铅性能及机制初步研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary research on lead tolerance and bio-accumulation mechanisms of a naphthalene-degrading strain in soil
  • 作者:张一博 ; 吕勃熠 ; 王志强 ; 黄梦香 ; 倪庆林 ; 舒选强 ; 黄磊
  • 英文作者:ZHANG Yi-bo;L Bo-yi;WANG Zhi-qiang;HUANG Meng-xiang;NI Qing-lin;SHU Xuan-qiang;HUANG Lei;School of Chemistry and Chemical Engineering, Tianjin University of Technology;
  • 关键词:土壤 ; 伯克霍尔德菌 ; 金属 ; ; ; 耐受性 ; 生物修复
  • 英文关键词:Soil;;Burkholderia sp;;Metal;;heavy;;Lead;;Tolerance;;Bioremediation
  • 中文刊名:HJYJ
  • 英文刊名:Journal of Environment and Health
  • 机构:天津理工大学化学化工学院;天津市疾病预防控制中心卫生检测所理化室;
  • 出版日期:2016-12-20
  • 出版单位:环境与健康杂志
  • 年:2016
  • 期:v.33;No.258
  • 基金:国家自然科学基金青年基金(31100400);; 天津市应用基础及前沿技术研究计划(15JCQNJC08800);; 国家级大学生创新训练项目(201610060037)
  • 语种:中文;
  • 页:HJYJ201612005
  • 页数:6
  • CN:12
  • ISSN:12-1095/R
  • 分类号:21-25+99
摘要
目的探讨土壤中萘降解菌对萘和重金属双重污染的耐受性。方法对油田石油污染土壤中分离到的一株高效萘降解菌——伯克霍尔德菌(Burkholderia sp.)TN的重金属耐受性、铅富集机制及在土壤生物修复中的应用进行研究,以分光光度法测定不同Pb~(2+)浓度(100~500 mg/L)对菌悬液吸光度的影响,以电感耦合等离子体发射光谱仪(ICP-OES)测定培养基中重金属(50 mg/L,Pb~(2+),Zn~(2+),Cu~(2+)和Cd~(3+))在菌体培养液、细胞壁、细胞内富集物中的分布,以扫描电镜(SEM)、能谱仪(EDS)和傅里叶变换红外光谱(FTIR)观察100 mg/L Pb~(2+)对菌体形态、元素及官能团分布的影响。结果菌株TN对Pb~(2+)的最高耐受浓度为500 mg/L并可耐受一定浓度的Zn~(2+)、Cu~(2+)和Cd~(3+),TN对Pb~(2+)富集程度最高,细胞壁及胞内富集率达到98.33%;菌体蓄积Pb~(2+)后细胞壁表面有沉淀物附着并有铅元素检出,对Pb~(2+)的蓄积主要依靠细胞壁上的羧基、羟基、酰胺基及磷酸基团;将TN菌株接种到含有2.5 mg/g萘及200 mg/L Pb~(2+)的灭菌土壤中,经过13 d室温培养之后,萘的去除率为94.29%。结论 TN菌株对Pb~(2+)、Zn~(2+)、Cu~(2+)和Cd~(3+)均具有一定的耐受性,对Pb~(2+)的富集能力强。该菌株能够依靠细胞壁上的活性基团富集Pb~(2+),适用于萘和Pb~(2+)双重胁迫的土壤修复。
        Objective To explore the lead tolerance of a naphthalene-degrading strain TN isolated from oil contaminated soil of oil field. Methods A naphthalene-degrading strain TN isolated from oil contaminated soil of oil field was collected for research on the resistance to different heavy metals, the mechanism of lead accumulation and application in soil bioremediation.The mechanism of lead accumulation by stain TN was evaluated by inductively coupled plasma-optical emission spectrometry(ICPOES), scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDS) and infrared spectroscopy(FTIR).Results The results of resistance experiments showed that the maximum tolerated concentration of lead was 500 mg/L and could tolerate a certain concentration of Zn~(2+), Cu~(2+)and Cd~(3+). The adsorption rate of Pb~(2+)was the highest(98.33%) by cell wall and intracellular. The granular lead was precipitated on the cell wall of bacteria based on the possible functional groups such as carboxyl, hydroxyl, amide group and phosphoric acid group. After inoculating strain TN into the autoclaved soils containing0.25% naphthalene and 200 mg/L Pb~(2+), incubating it at room temperature for 13 days, 94.29% naphthalene was removed.Conclusion TN strain has a certain resistance to heavy metals such as Pb~(2+), Zn~(2+), Cu~(2+)and Cd~(3+). This strain can enrich Pb~(2+)by the active groups on the cell wall and better effect of degradation was realized by applying to the remediation of naphthalene and Pb~(2+)contaminated soil.
引文
[1]Xu N,Bao M,Sun P,et al.Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium[J].Bioresour Technol,2013,149:22-30.
    [2]黄兴如,张彩文,张瑞杰,等.多环芳烃降解菌的筛选、鉴定及降解特性[J].微生物学通报,2016,43(5):965-973.
    [3]Chaudhary P,Sahay H,Sharma R,et al.Identification and analysis of polyaromatic hydrocarbons(PAHs)-biodegrading bacterial strains from refinery soil of India[J].Environ Monitor Assess,2015,187:1-9.
    [4]Thomas F,Lorgeoux C,Faure P,et al.Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination[J].Int Biodeterioration Biodegradation,2016,107:1-9.
    [5]Guo M,Gong Z,Allinson G,et al.Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation[J].Chemosphere,2016,144:1513-1520
    [6]Park JH,Chon HT.Characterization of cadmium biosorption by Exiguobacterium sp.isolated from farmland soil near Cu-Pb-Zn mine[J].Environ Sci Pollut Res,2016:23:11814-11822.
    [7]李进,冯冲凌,李科林,等.抗铅锌功能菌生长菌株和干菌体吸附Pb2+、Zn2+性能优化及机理分析[J].微生物学通报,2015,42(7):1224-1233
    [8]Liu M,Dong F,Zhang W,et al.Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis:a decrement solution for nuclide and heavy metal disposal[J].J Hazard Mater,2016,314:295-303
    [9]廖佳,冯冲凌,李科林,等.耐性真菌HA吸附铅、锌的影响因素及吸附机理研究[J].微生物学通报,2015,42(2):254-263.
    [10]廉景燕,吕博熠,刘金彪,等.萘降解菌的分离鉴定及在污染土壤生物修复中的应用[J].南开大学学报:自然科学版,2015,48(6):92-98
    [11]马欣,刘蕊,柴铭锋,等.萘降解菌TN培养基组成及条件优化[J].天津理工大学学报,2015,31(1):56-50.
    [12]Ge H W,Lian M F,Wen F Z,et al.Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China[J].J Hazard Mater,2009,162:50-56.
    [13]Ferreira LS,Rodrigues MS,de Carvalho JCM,et al.Adsorption of Ni2+,Zn2+and Pb2+onto dry biomass of Arthrospira(Spirulina)platensis and Chlorella vulgaris.I.single metal systems[J].Chem Engineering J,2011,173:326-333.
    [14]Murugesan A,Ravikumar L,Sathya Selva Bala V,et al.Removal of Pb(Ⅱ),Cu(Ⅱ)and Cd(Ⅱ)ions from aqueous solution using polyazomethineamides:equilibrium and kinetic approach[J].Desalination,2011,271:199-208.
    [15]Sulaymon AH,Ebrahim SE,Mohammed-Ridha MJ.Equilibrium,kinetic,and thermodynamic biosorption of Pb(Ⅱ),Cr(Ⅲ),and Cd(Ⅱ)ions by dead anaerobic biomass from synthetic wastewater[J].Environ Sci Pollut Res Int,2013,20:175-187.
    [16]吕博熠,刘金彪,孙田甜,等.2株石油污染降解菌的分离与鉴定[J].天津理工大学学报,2014,30(1):60-64.
    [17]Pan J,Ge X,Liu R,et al.Characteristic features of Bacillus cereus cell surfaces with biosorption of Pb(II)ions by AFM and FT-IR[J].Colloids Surfaces B:Biointerfaces,2006,52:89-95.
    [18]Naik MM,Pandey A,Dubey SK.Biological characterization of leadenhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B[J].Biodegradation,2012,23:775-783.
    [19]Ali N,Dashti N,Al-Mailem D,et al.Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance[J].Environ Sci Pollut Res,2012,19:812-820.
    [20]Pandey P,Pathak H,Dave S.Microbial ecology of hydrocarbon degradation in the soil:a review[J].Res J Environ Toxicol,2016,10:1.
    [21]Olaniran AO,Balgobind A,Pillay B.Bioavailability of heavy metals in soil:impact on microbial biodegradation of organic compounds and possible improvement strategies[J].Int J Mol Sci,2013,14:10197-10228.
    [22]Nam IH,Kim Y,Cho D,et al.Effects of heavy metals on biodegradation of fluorene by a Sphingobacterium sp.strain(KM-02)isolated from polycyclic aromatic hydrocarbon-contaminated mine soil[J].Environ Eng Sci,2015,32:891-898.
    [23]高蔚丰,周英.菲降解菌ZJF08对几种金属离子耐受浓度的测定[J].环境科学与技术,2014,37(6):125-128
    [24]Thavamani P,Megharaj M,Naidu R.Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium[J].Biodegradation,2012,23:823-835.
    [25]Xu N,Bao M,Sun P,et al.Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium[J].Bioresour Technol,2013,149:22-30
    [26]Li C,Jiang W,Ma N,et al.Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae[J].Bioresour Technol,2014,155:116-121
    [27]Bahari ZM,Altowayti WAH,Ibrahim Z,et al.Biosorption of As(III)by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment:equilibrium and kinetic study[J].Appl Biochem Biotechnol,2013,171:2247-2261.
    [28]马佳林,聂小琴,董发勤,等.三种微生物对铀的吸附行为研究[J].中国环境科学,2015,35(3):825-832.
    [29]陈志,邹情雅,潘晓鸿,等.铅锌矿尾矿坝分离节杆菌12-1对Pb2+的耐受和吸附性能研究[J].农业生物技术学报,2014,22(11):1394-1401.
    [30]赵晗,许文娟,郝莹,等.环境中耐锰细菌的筛选鉴定及除锰性能研究[J].环境与健康杂志,2016,33(4):303-307.
    [31]Jiang MY,Ohnuki T,Kozai N,et al.Biological nano-mineralization of Ce phosphate by Saccharomyces cerevisiae[J].Chem Geol,2010,277:61-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700