CYP116B家族单加氧酶的发现、表征及分子改造研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discovery,characterization and molecular engineering of CYP116B monooxygenase
  • 作者:李仁结 ; 张龑 ; 许建和 ; 郁惠蕾
  • 英文作者:LI Renjie;ZHANG Yan;XU Jianhe;YU Huilei;State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology;
  • 关键词:CYP116B家族单加氧酶 ; 表征 ; 分子改造 ; 结构功能关系
  • 英文关键词:CYP116B monooxygenase;;characterization;;molecular evolution;;relationship between structure and function
  • 中文刊名:SWJG
  • 英文刊名:Chinese Journal of Bioprocess Engineering
  • 机构:华东理工大学生物反应器工程国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:生物加工过程
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金(21672063)
  • 语种:中文;
  • 页:SWJG201901006
  • 页数:8
  • CN:01
  • ISSN:32-1706/Q
  • 分类号:35-41+49
摘要
CYP116B家族单加氧酶属于细胞色素P450单加氧酶的第IV家族,能够催化包括羟化、硫醚氧化、O-脱烷基、N-脱烷基和环氧化等在内的多种类型反应,具有广阔的应用前景。近年来,多个CYP116B家族成员酶的发现、分子改造及底物谱拓展使人们对它的酶学性质有了更为深入的理解,为开发新型具有工业应用潜力的CYP116B家族成员酶提供了研究基础。本文中,笔者主要从CYP116B家族单加氧酶的发现、表征、分子改造及结构功能关系等方面综述CYP116B在生物催化领域的研究进展。
        CYP116B monooxygenases,belonging to Class IV,catalyze various reactions such as hydroxylation,sulfide oxidation,O-dealkylation,N-dealkylation and epoxidation. Furthermore,it has the broad application prospect to biosynthesize high-value products. Thus far,several members from this subfamily were identified,characterized,and engineered,making us further understand the catalytic performance of these enzymes and laying the foundation for its potential application. In this review,we discussed the identification,characterization and the advances in relationship study between protein structure and function of CYP116B monooxygenase.
引文
[1] CIRINO P C,ARNOLD F H.Protein engineering of oxygenases for biocatalysis[J].Curr Opin Chem Biol,2002,6(2):130-135.
    [2] XU F.Applications of oxidoreductases:recent progress[J]. Ind Biotechnol,2005,1(1):38-50.
    [3] NELSON D R,KOYMANS L,KAMATAKI T,et al. P450superfamily:update on new sequences,gene mapping,accession numbers and nomenclature[J]. Pharmacogenetics,1996,6(1):1-42.
    [4] OMURA T,SATO R. Carbon monoxide-binding pigment of liver microsomes:I. evidence for its hemoprotein nature[J]. J Biol Chem,1964,239(7):2370-2378.
    [5] BERNHARDT R.Cytochromes p450 as versatile biocatalysts[J].J Biotechnol 2006,124(1):128-145.
    [6] SEVRIOUKOVA I F,POULOS T L,CHURBANOVA I Y.Crystal structure of the putidaredoxin reductase·putidaredoxin electron transfer complex[J].J Biol Chem,2010,285(18):13616-13620.
    [7] TRIPATHI S,LI H,POULOS T L. Structural basis for effector control and redox partner recognition in cytochrome p450[J].Science,2013,340:1227-1230.
    [8] SUGISHIMA M,SATO H,HIGASHIMOTO Y,et al. Structural basis for the electron transfer from an open form of nadphcytochrome p450 oxidoreductase to heme oxygenase[J]. PNAS,2014,111(7):2524-2529.
    [9] SEVRIOUKOVA I F,LI H,ZHANG H,et al. Structure of a cytochrome p450-redox partner electron-transfer complex[J].PNAS,1999,96(5):1863-1868.
    [10] LI A T,ZHANG J D,XU J H,et al.Isolation of Rhodococcus sp.strain ECU0066,a new sulfide monooxygenase-producing strain for asymmetric sulfoxidation[J]. Appl Environ Microbiol,2009,75(2):551-556.
    [11] ZHANG J D,LI A T,YANG Y,et al. Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation[J]. Appl Microbiol Biotechnol,2010,85(3):615-624.
    [12] OSHIMA R,FUSHINOBU S,SU F,et al.Structural evidence for direct hydride transfer from nadh to cytochrome p450nor[J]. J Mol Biol,2004,342(1):207-217.
    [13] WARMAN A J,ROBINSON J W,LUCIAKOVA D,et al.Characterization of Cupriavidus metallidurans CYP116B1 a thiocarbanate herbicide oxygenating P450 phthalate dioxygenase reductase fusion protein[J].FEBS J,2012,279:1675-1693.
    [14] ROBERTS G A,GROGAN G,GRETER A,et al.Identification of a new class of cytochrome P450 from a Rhodococcus sp.[J]. J Bacteriol,2002,184:3898-3908.
    [15] LIU L,SCHMID R D,URLACHER V B.Cloning,expression,and characterization of a self-sufficient cytochrome P450monooxygenase from Rhodococcus ruber DSM 44319[J]. Appl Microbiol Biotechnol,2006,72:876-882.
    [16] YIN Y C,YU H L,LUAN Z J,et al. Unusually broad substrate profile of self-sufficient cytochrome P450 monooxygenase CYP116B4 from Labrenzia aggregata[J]. ChemBioChem 2015,15:2443-2449.
    [17] DANIELA M,SADEGHI S J,GIOVANNA D N,et al.CYP116B5:a new class VII catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes[J].Mol Microbiol,2015,95(3):539-554.
    [18] LI R J,XU J H,YIN Y C,et al.Rapid probing the reactivity of P450 monooxygenases from CYP116B subfamily using substratebased method[J].New J Chem,2016,40:8928-8934.
    [19] PORTER J L,SABATINI S,MANNING J,et al.Clong,expression and characterization of P450-Hal1(CYP116B62)from Halomonas sp.NCIMB 172:a self-sufficient P450 with high expression and diverse substrate scope[J]. Enzyme Microbiol Technol,2018,113:1-8.
    [20] TAVANTI M,PORTER J L,SABATINI S,et al.A panel of new thermostable CYP116B self-sufficient cytochrome P450monooxygenase catalysing C-H activation with diverse substrate scope[J].ChemCatChem 2018,10:1041-1051.
    [21] O’REILLY E,CORBETT M,HUSSAIN S,et al. Substrate promiscuity of cytochrome P450 Rh F[J]. Catal Sci Technol,2013,3:1490-1492.
    [22] HAMMER S C,KUBIK G,WATKINS E,et al.Anti-markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis[J].Science 2017,358:215-218.
    [23] LIU L,SCHMID R D,URLACHER V B. Engieering cytochrome P450 monooxygenase CYP116B3 for high dealkylation activity[J].Biotechnol Lett,2010,32:841-845.
    [24] LI R J,XU J H,CHEN Q,et al. Enhancing the catalytic performance of a CYP116B monooxygenase by transdomain combination mutagenesis[J]. ChemCatChem, 2018, 10:2962-2968.
    [25] LI R J,LI A T,ZHAO J,et al. Engineering P450La MO stereoselectivity and product selectivity for selective C-H oxidation of tetralin-like alkylbenzenes[J]. Catal Sci Technol,2018,8:4638-4644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700