高超声速飞行器热流密度/分层温度/碳化层研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on heat flux density/stratified temperature/carbonization layer of hypersonic vehicle
  • 作者:杨凯威 ; 张杨 ; 梁欢 ; 张利嵩
  • 英文作者:YANG Kaiwei;ZHANG Yang;LIANG Huan;ZHANG Lisong;Hypersonic Vehicle Research Center of Thermal Protection and Insulation,Beijing Institute of Space Long March Vehicle;
  • 关键词:再入飞行器 ; 实测热流密度 ; 转捩特征 ; 分层温度 ; 碳化层厚度
  • 英文关键词:reentry vehicle;;measured heat flux density;;transition characteristics;;stratified temperature;;thickness of carbonization layer
  • 中文刊名:ZGKJ
  • 英文刊名:Chinese Space Science and Technology
  • 机构:北京航天长征飞行器研究所高超声速飞行器防隔热中心;
  • 出版日期:2018-03-07 13:54
  • 出版单位:中国空间科学技术
  • 年:2018
  • 期:v.38;No.226
  • 语种:中文;
  • 页:ZGKJ201803006
  • 页数:7
  • CN:03
  • ISSN:11-1859/V
  • 分类号:37-43
摘要
受试验设备能力限制,地面风洞无法完全模拟高超声速飞行器临近空间热环境。文章采用在飞行器表面开孔安装长时耐高温热流传感器直接测量热流密度的方法,国内首次获得Ma12以上高超声速飞行器表面热流密度时变数据和边界层转捩特征。实测热流值与理论预示值规律相同,两者偏差小于20%。针对树脂基材料导热微分方程中虽考虑了热解吸热项,但未考虑导热系数随温度变化情况,采用在树脂基材料导热微分方程中加入物性参数随温度变化项的方法,计算了飞行器热防护结构内部分层温度和碳化层厚度,并与实测结果进行了比较,不考虑树脂热解特性和材料物性参数随温度变化,理论值高于实测值,最大偏差275~320℃;考虑热解特性和物性参数随温度变化情况,计算值与实测值最大偏差小于70℃。
        Limited by the capacity of the test equipment,the ground wind tunnel can′t fully simulate the near space thermal environment of the hypersonic vehicle.The longtime high temperature heat sensor was installed on the surface of the aircraft.For the first time in china,the characteristics of heat flux density time-varying data and boundary layer transition in the hypersonic vehicle above Ma 12 was obtained.The measured heat flow value is the same as the theoretical prediction value,and the deviation is less than 20%.Theoretical calculation of the internal temperature of resin based composites is higher than actual value,by the method of adding physical property parameters with temperature variation and thethermal conductivity in the heat conduction differential equation of resin matrix.And the internal stratified temperature and thickness of carbonization layer were calculated.Compared with the measured results,the deviation between the calculated value and measured result is less than 70℃,but the calculated value is higher than measured result and the maximum deviation is 275~320℃,when the thermal conductivity and physical property parameters with temperature variation are not considered.
引文
[1]WENDELL H S.X-15research result with a selected bibliography,NASA-SP-60[R].Washington,D.C.:NASA,1965.
    [2]MURPHY J D,RUBESIN M W.An evaluation of freeflight test data for aerodynamic heating from laminar,turbulent,and transitional boundary layers,Part II-the X-17reentry body,NASA-TA-9527[R].Washington,D.C.:NASA,1960.
    [3]STAINBACK PC,JOHNSON C B,BONEY L R,et al.A comparison of theoretical predictions and heat-transfer measurements for a flight experiment at Mach 20(Reentry F),NASA-TM-2560[R].Washington,D.C.:NASA,1962.
    [4]BERRY S,DARYABEIGI K,WURSTER K,et al.Boundary layer transition on X-43A,AIAA-2008-3736[R].Reston:AIAA,2008.
    [5]GLHAN A,SIEBE F,THIELE T,et al.Instrumentation of the SHEFEX-II flight experiment and selected flight data[C].18th AIAA International Spaceplane and Hypersonics Systems and Technologies Conference,Tours:AIAA-2012-5819.
    [6]刘云峰,汪运鹏,苑朝凯,等.JF12长实验时间激波风洞10°尖锥气动力实验研究[J].气体物理,2017,2(2):1-7.LIU Y F,WANG Y P,YUAN C K,et al.Aerodynamic force measurements of 10°half-angle cone in JF12long-test-time shock tunnel[J].Physics of Gases,2017,2(2):1-7(in Chinese).
    [7]毕志献,韩曙光,伍超华,等.磷光热图测热技术研究[J].实验流体力学,2013,27(3):87-92.BI Z X,HAN S G,WU C H,et al.Phosphor thermography study in gun tunnel[J].Journal of Experiments in Fluid Mechanics,2013,27(3):87-92(in Chinese).
    [8]吴大方,潘兵,高镇同,等.超高温、大热流、非线性气动热环境试验模拟及测试技术研究[J].实验力学,2012,27(3):255-271.WU D F,PAN B,GAO Z T,et al.On the experimental simulation of ultra-high temperature,high heat flux and nonlinear aerodynamic heating environment and thermo-mechanical testing technique[J].Journal of Experimental Mechanics,2012,27(3):255-271(in Chinese).
    [9]佟铁峰,王超杰.高热流测量研究[J].导弹与航天运载技术,2012(6):53-56.TONG T F,WANG C J.Study on measurement of powerful heat flux[J].Missiles and Space Vehicles,2012(6):53-56(in Chinese).
    [10]MUMFORD N A,HOPKINS P C,LLOYD B A.Matrix/fiber interface effects on Kevlar 49 pressure vessel performance[J].Journal of Spacecraft and Rockets,1983,20(4):399-400.
    [11]HITES M H,BREWSTER M Q.Effects of Kevlar fibers on ammonium per chlorate propellant combustion[J].Journal of Propulsion and Power,1996,12(3):616-619.
    [12]蒋凌澜,张利嵩,匡松连,等.PGE/Phenolic的动态热解对温度场计算的影响[J].宇航材料工艺,2014(3):16-20.JIANG L L,ZHANG L S,KUANG S L,et al.Effect of dynamic pyrolysis of PGE/Phenolic composites on temperature field[J].Aerospace Materials&Technology,2014(3):16-20(in Chinese).
    [13]罗礼平,张利嵩.玻璃钢复合材料受热状态物性参数变化研究[J].玻璃钢/复合材料,2015(2):60-63.LUO L P,ZHANG L S.Influence of heating on the physical properties of fiber reinforced plastics[J].Fiber Reinforced Plastics/Composites,2015(2):60-63(in Chinese).
    [14]唐功跃,吴国庭.防热层表面突起物及内部结构的温度场分析[J].中国空间科学技术,2000,20(1):29-35.TANG G Y,WU G T.Analysis of the temperature of protuberance on the surface of thermal layer and inner complex structure[J].Chinese Space Science and Technology,2000,20(1):29-35(in Chinese).
    [15]姜贵庆.返回式卫星烧蚀热防护机理与数值模拟[J].中国空间科学技术,1990,10(6):34-43.JIANG G Q.Ablative thermal protective mechanism and numerical simulation for returnable satellite[J].Chinese Space Science and Technology,1990,10(6):34-43(in Chinese).
    [16]邢连群.返回式卫星烧蚀防热结构的工程计算[J].中国空间科学技术,1991,11(2):26-34.XING L Q.An engineering computation of ablative thermal protection structure of returnable satellite[J].Chinese Space Science and Technology,1991,11(2):26-34(in Chinese).
    [17]王俊,杨洋,周毅,等.一种新的烧蚀热响应算法在质量估算中的应用[J].中国空间科学技术,2015,35(1):66-74.WANG J,YANG Y,ZHOU Y,et al.Application of a new ablation thermal response algorithm in mass estimation[J].Chinese Space Science and Technology,2015,35(1):66-74(in Chinese).
    [18]陈清华.弹道式再入航天器的烧蚀防热结构设计[J].中国空间科学技术,1990,10(6):44-48.CHEN Q H.Ablative thermal protection structure design of return module[J].Chinese Space Science and Technology,1990,10(6):44-48(in Chinese).
    [19]郄殿福,戴思红,郭秀才,等.蜂窝复合板的热试验及分析计算[J].中国空间科学技术,1995,15(5):53-61.QIE D F,DAI S H,GUO X C,et al.Heating test and numerical calculation on honeycombed plate[J].Chinese Space Science and Technology,1995,15(5):53-61(in Chinese).
    [20]李鹏,肖泽娟,程惠尔.空间多层打孔隔热材料热分析数值方法研究[J].中国空间科学技术,2006,26(5):17-20.LI P,XIAO Z J,CHENG H E.Numerical model study of thermal analysis on multilayer perforated insulation material in orbit[J].Chinese Space Science and Technology,2006,26(5):17-20(in Chinese).
    [21]徐超,张铎.高超声速飞行器热防护系统尺寸优化设计[J].中国空间科学技术,2007,27(1):65-69.XU C,ZHANG D.Size optimization of thermal protection systems for hypersonic aircraft[J].Chinese Space Science and Technology,2007,27(1):65-69(in Chinese).
    [22]张建可.碳纤维复合材料低温热导率的实用计算方法[J].中国空间科学技术,1994,14(6):39-42.ZHANG J K.The calculated method of thermal conductivity of carbon fiber composites at low temperatures[J].Chinese Space Science and Technology,1994,14(6):39-42(in Chinese).
    [23]张建可.树脂基碳纤维复合材料的热物理性能之一——导热系数[J].中国空间科学技术,1987,7(3):55-60.ZHANG J K.The one of thermal physical troperties of carbon fiber/epoxy—resin composites—thermal conductivity[J].Chinese Space Science and Technology,1987,7(3):55-60(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700