CFETR氦冷固态增殖剂包层产氚性能研究及优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study and Optimization on Tritium Production Performance of CFETR Helium Cooled Solid Breeder Blanket
  • 作者:张宝锐 ; 解衡 ; 郎明刚 ; 孙倩
  • 英文作者:ZHANG Baorui;XIE Heng;LANG Minggang;SUN Qian;Institute of Nuclear and New Energy Technology,Tsinghua University;
  • 关键词:CFETR ; 氦冷固态增殖剂包层 ; TBR
  • 英文关键词:CFETR;;helium cooled solid breeder blanket;;TBR
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:清华大学核能与新能源技术研究院;
  • 出版日期:2018-08-08 14:13
  • 出版单位:原子能科学技术
  • 年:2018
  • 期:v.52
  • 基金:国家科技计划课题国际热核聚变实验堆(ITER)计划专项资助项目(2014GB114000)
  • 语种:中文;
  • 页:YZJS201809015
  • 页数:7
  • CN:09
  • ISSN:11-2044/TL
  • 分类号:118-124
摘要
氦冷固态增殖剂包层是中国聚变工程实验堆(CFETR)的3种候选包层概念之一。本文基于中国核工业西南物理研究院提出的一种氦冷固态增殖剂包层概念,通过蒙特卡罗输运程序MCNP5建立了包层三维中子学模型,探究了不同几何布置方案及结构设计参数对包层产氚性能的影响,得到了全堆氚增殖比(TBR)及极向各包层模块产氚分布,并由优化后的模型得到了包层模块核热分布。结果表明,优化后的TBR达到1.177,满足氚自持的最低要求。
        The helium cooled solid breeder blanket is one of the three candidate blanket concepts of Chinese Fusion Engineering Test Reactor(CFETR).Based on the concept of helium cooled solid breeder blanket proposed by Southwestern Institute of Physics,the three-dimensional neutronic model of CFETR helium cooled solid breeder blanket was established by Monte Carlo transport program MCNP5,and the effects of different geometric arrangement schemes and structural parameters on tritium breeding ratio(TBR)and the TBR in each blanket module were obtained.The results show that the optimized TBR reaches 1.177 and meets the requirement of tritium self-sufficiency.
引文
[1]WAN Y.Design and strategy for the Chinese Fusion Engineering Testing Reactor(CFETR)[C]∥25th Symposium on Fusion Engineering.US:[s.n.],2013.
    [2]缪鹏,王苏豪,张国书,等.紧凑型托卡马克聚变实验堆包层设计及中子学分析[J].核聚变与等离子体物理,2015,35(4):327-333.MIAO Peng,WANG Suhao,ZHANG Guoshu,et al.Blanket design and neutronics analysis for compact tokamak test reactor[J].Nuclear Fusion and Plasma Physics,2015,35(4):327-333(in Chinese).
    [3]冯开明.中国聚变工程实验堆(CFETR)固态增殖剂包层设计进展[C]∥聚变堆总体设计组第七次会议.成都:核工业西南物理研究院,2012.
    [4]ROUX N,TANAKA S,JOHNSON C,et al.Ceramic breeder material development[J].Fusion Engineering and Design,1998,41(3):31-38.
    [5]WANG X,ZHENG J,CHEN H.A prediction model for the effective thermal conductivity of mono-sized pebble beds[J].Fusion Engineering and Design,2016,103:136-151.
    [6]FENG K,WANG X,FENG Y,et al.Current progress of Chinese HCCB TBM program[J].Fusion Engineering and Design,2016,109-111:729-735.
    [7]SHIMWELL J,LILLEY S,MORGAN L,et al.Reducing beryllium content in mixed bed solidtype breeder blankets[J].Fusion Engineering and Design,2016,109-111(7):1 564-1 568.
    [8]YING A,ABDOU M,CALDERONI P,et al.Solid breeder test blanket module design and analysis[J].Fusion Engineering and Design,2006,81(1-7):659-664.
    [9]CAMBI G,CEPRAGA D G,FRISONI M,et al.Neutron irradiation effects on the ITER-EDA and ITER-RC first wall/blanket materials[C]∥Symposium on Fusion Engineering,Albuquerque.US:IEEExplore,1999:330-333.
    [10]KAUFMANN M,NEU R.Tungsten as first wall material in fusion devices[J].Fusion Engineering&Design,2007,82(5):521-527.
    [11]李敏.中国聚变工程实验堆氦冷固态包层结构设计与热工水力分析研究[D].合肥:中国科学技术大学,2015.
    [12]吕广宏,罗广南,李建刚.磁约束核聚变托卡马克等离子体与壁相互作用研究进展[J].中国材料进展,2010,29(7):42-48.LV Guanghong,LUO Guangnan,LI Jiangang.Research progress on plasma-wall interactions in a magnetic confinement Tokamak[J].Materials China,2010,29(7):42-48(in Chinese).
    [13]BOLT H,BARABASH V,FEDERICI G,et al.Plasma facing and high heat flux materials:Needs for ITER and beyond[J].Journal of Nuclear Materials,2002,307(3):43-52.
    [14]FEDERICI G,IOKI K,KUKUSHKIN A S.Overview of goals and performance of ITER and strategy for plasma wall interaction investigation[J].Journal of Nuclear Materials,2005,337(1):808-815.
    [15]吕中良.CFETR氮冷固态氚增殖剂包层中子学设计及性能研究[D].合肥:中国科学技术大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700