6061铝合金搅拌摩擦对接焊的数值模拟(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of friction stir butt-welding of 6061 aluminum alloy
  • 作者:赵鹏程 ; 沈以赴 ; 黄国强 ; 郑其贤
  • 英文作者:Peng-cheng ZHAO;Yi-fu SHEN;Guo-qiang HUANG;Qi-xian ZHENG;College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics;
  • 关键词:铝合金 ; 搅拌摩擦焊 ; 数值模拟 ; 动网格 ; 示踪元素法 ; 温度分布 ; 涡流
  • 英文关键词:aluminum alloy;;friction stir welding;;numerical simulation;;dynamic mesh;;trace element method;;temperature distribution;;whirlpools
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:南京航空航天大学材料科学与技术学院;
  • 出版日期:2018-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2018
  • 期:v.28
  • 基金:Project(51475232)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201806017
  • 页数:10
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:161-170
摘要
建立计算流体动力学二维模型模拟6061铝合金的搅拌摩擦对接焊。运用动网格,使模型中的搅拌针能像实验中的搅拌针一样水平移动和绕轴转动,而且体热源能为模型提供一个与实验相似的温度场。另外,将一小块锌嵌入被焊工件中,作为示踪元素研究焊接流动行为。通过数值模拟,得到焊接过程的温度分布和矢量分布图。通过实验的温度监控以及金相分析,间接证明了模拟结果的合理性。模拟结果表明,焊缝两侧的温度分布并不对称,但具有相同的变化趋势,且前进侧的峰值温度比后退侧高约10 K。迹线图和相分布图反映焊接过程的流动性。在搅拌针转动剪切力和前进挤压作用下,搅拌针周围形成3种运动涡流,这些涡流使得搅拌针周围材料搅拌更加剧烈,成分分布更加均匀。
        A two-dimensional computational fluid dynamics model was established to simulate the friction stir butt-welding of 6061 aluminum alloy. The dynamic mesh method was applied in this model to make the tool move forward and rotate in a manner similar to a real tool, and the calculated volumetric source of energy was loaded to establish a similar thermal environment to that used in the experiment. Besides, a small piece of zinc stock was embedded into the workpiece as a trace element. Temperature fields and vector plots were determined using a finite volume method, which was indirectly verified by traditional metallography. The simulation result indicated that the temperature distribution was asymmetric but had a similar tendency on the two sides of the welding line. The maximum temperature on the advancing side was approximately 10 K higher than that on the retreating side. Furthermore, the precise process of material flow behavior in combination with streamtraces was demonstrated by contour maps of the phases. Under the shearing force and forward extrusion pressure, material located in front of the tool tended to move along the tangent direction of the rotating tool. Notably, three whirlpools formed under a special pressure environment around the tool, resulting in a uniform composition distribution.
引文
[1]THOMAS W M,NICHOLAS E D.Friction stir welding for the transportation industries[J].Materials&Design,1997,18(4):269-273.
    [2]JOHNSEN M R.Friction stir welding takes off at Boeing[J].Welding Journal,1999,78(2):35-39.
    [3]KISHORE V R,ARUN J,PADANABHAN R,BALASUBRAMANIAN V.Parametric studies of dissimilar friction stir welding using computational fluid dynamics simulation[J].The International Journal of Advanced Manufacturing Technology,2015,80(1-4):91-98.
    [4]ABNAR B,KAZEMINEZHAD M,KOKABI A H.Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates[J].Transactions of Nonferrous Metals Society of China,2015,25(7):2147-2155.
    [5]DAWOOD H I,MOHAMMED K S,RAHMAT A,UDAY M B.Effect of small tool pin profiles on microstructures and mechanical properties of 6061 aluminum alloy by friction stir welding[J].Transactions of Nonferrous Metals Society of China,2015,25(9):2856-2865.
    [6]SATO Y S,URATA M,KOKAWA H.Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063[J].Metallurgical and Materials Transactions A,2002,33(3):625-635.
    [7]HEJAZI I,MIRSALEHI S E.Mechanical and metallurgical characterization of AA6061 friction stir welded joints using microhardness map[J].Transactions of Nonferrous Metals Society of China,2016,26(9):2313-2319.
    [8]KIRAL B G,TABANOGLU M,SERINDAG H T.Finite element modeling of friction stir welding in aluminum alloys joint[J].Mathematical and Computational Applications,2013,18(2):122-131.
    [9]GEMME F,VERREMAN Y,DUBOURG L,JAHAZI M.Numerical analysis of the dwell phase in friction stir welding and comparison with experimental data[J].Materials Science and Engineering A,2010,527(16):4152-4160.
    [10]ZHANG Zhao,ZHANG Hong-wai.Numerical studies on the effect of transverse speed in friction stir welding[J].Materials&Design,2009,30(3):900-907.
    [11]COX C,LAMMLEIN D,STRAUSS A,COOK G.Modeling the control of an elevated tool temperature and the effects on axial force during friction stir welding[J].Materials and Manufacturing Processes,2010,25(10-12):1278-1282.
    [12]NAIDU R.Friction stir welding:Thermal effects of a parametric study on butt and lap welds[D].Wichita:Wichita State University,2006.
    [13]YADUWANSHI D K,BAG S,PAL S.Numerical modeling and experimental investigation on plasma-assisted hybrid friction stir welding of dissimilar materials[J].Materials&Design,2016,92:166-183.
    [14]ZHANG Jing-qing,SHEN Yi-fu,LI Bo,XU Hai-sheng,YAO Xin,KUANG Bin-bin,GAO Ji-cheng.Numerical simulation and experimental investigation on friction stir welding of 6061-T6aluminum alloy[J].Materials&Design,2014,60:94-101.
    [15]PASHAZADEH H,TEIMOURNEZHAD J,MASOUMI A.Numerical investigation on the mechanical,thermal,metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification[J].Materials&Design,2014,55:619-632.
    [16]ZHAO Yan-hua,LIN San-bao,HE Zi-qiu,WU Lin.Microhardness prediction in friction stir welding of 2014 aluminium alloy[J].Science and Technology of Welding and Joining,2006,11(2):178-182.
    [17]BHATTACHARYA T K,DAS H,PAL T K.Influence of welding parameters on material flow,mechanical property and intermetallic characterization of friction stir welded AA6063 to HCP copper dissimilar butt joint without offset[J].Transactions of Nonferrous Metals Society of China,2015,25(9):2833-2846.
    [18]SWAIN S,MOHANTY S.A 3-dimensional Eulerian–Eulerian CFD simulation of a hydrocyclone[J].Applied Mathematical Modelling,2013,37(5):2921-2932.
    [19]HE Xixo-cong,GU Feng-shou,BALL A.A review of numerical analysis of friction stir welding[J].Progress in Materials Science,2014,65:1-66.
    [20]NANDAN R,ROY G G,DEBROY T.Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding[J].Metallurgical and Materials Transactions A,2006,37(4):1247-1259.
    [21]MENDEZ P F,TELLO K E,LIENERT T J.Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding[J].Acta Materialia,2010,58(18):6012-6026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700