荒漠草原脉动性降水格局及其时空变化特征——以达尔罕茂明安联合旗为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precipitation pulse patterns and their spatiotemporal variation in desert steppes: a case study in the Darhan Muminggan Joint Banner
  • 作者:宋一凡 ; 卢亚静 ; 郭中小 ; 徐晓民 ; 郝伟罡 ; 刘慧文 ; 韩振华
  • 英文作者:SONG Yifan;LU Yajing;GUO Zhongxiao;XU Xiaomin;HAO Weigang;LIU Huiwen;HAN Zhenhua;Institute of Water Resources Science of Pasturing Area of the Ministry of Water Resources;Water Resources Department, China Institute of Water Resources and Hydropower Research;Beijing Water Science and Technology Institute;Power China Beijing Engineering Corporation Limited;
  • 关键词:荒漠草原 ; 脉动性 ; 降水格局 ; 变化特征 ; 时空分析
  • 英文关键词:desert steppe;;pulse;;precipitation pattern;;variation;;spatiotemporal analysis
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:水利部牧区水利科学研究所;中国水利水电科学研究院水资源研究所;北京市水科学技术研究院;中国电建集团北京勘测设计研究院有限公司;
  • 出版日期:2019-05-14 16:07
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:中国水利水电科学研究院科研专项项目(MK2016J16,MK2016J15);; 内蒙古自治区自然科学基金项目(2017MS0516)
  • 语种:中文;
  • 页:STXB201911015
  • 页数:15
  • CN:11
  • ISSN:11-2031/Q
  • 分类号:159-173
摘要
全球变化背景下,荒漠草原降水格局受到不同程度扰动,识别荒漠草原变化环境下脉动性降水格局及其时空变化特征具有重要生态学和水文学意义。利用达尔罕茂明安联合旗位于不同雨量带的3个气象站1960—2013年日降水数据,分析荒漠草原地区降水格局及其时空变化特征。研究表明,研究区0—5 mm、5—10 mm和大于10mm降水事件及降水量所占的比例分别为77%—80.9%、11.5%—12.2%、7.6%—10.9%和25.2%—32.2%、21.9%—25.4%、42.4%—52.9%。不同等级降水事件日均降水量分别为1.2—1.3 mm/d、7.0—7.1 mm/d、17.8—19.2 mm/d。研究区降水量较降水日数具有更强的时空变异性,全年和生长季降水日数和降水量主周期在2.84—4.5a左右。研究区不同雨量带不同降水等级降水日数和降水量普遍呈增加趋势,尤以0—5mm小降水事件的增加为主。
        Against the backdrop of global climate change, precipitation patterns in desert steppes have undergone varying degrees of disturbance. There is a particular significance in recognizing these alterations for both the hydrology and ecology of the changing environments of desert steppes. In this study, daily data from three meteorological stations located in regions of different precipitation gradients in the Darhan Muminggan Joint Banner were used to analyze precipitation patterns in desert steppes and their variation characteristics. Unlike previous studies on this topic, this research utilized precipitation events from areas of different precipitation gradients for comparison at the same temporal scale. Precipitation events of different levels were analyzed to determine the precipitation composition of desert steppes and its spatiotemporal variation. The results indicated that, overall, as the annual precipitation decreased, the fluctuation in the number of precipitation days and the precipitation amount in the study area gradually increased. Also, the fluctuations in precipitation amount were significantly greater than the fluctuations in the number of precipitation days, which meant that precipitation amount had greater spatiotemporal variability than the number of precipitation days. The proportions of the number of precipitation days of 0—5 mm, 5—10 mm, and >10 mm precipitation events were 77%—80.9%, 11.5%—12.2%, and 7.6%—10.9%, respectively, while the precipitation amount proportions of 0—5 mm, 5—10 mm, and >10 mm precipitation events were 25.2%—32.2%, 21.9%—25.4%, and 42.4%—52.9%, respectively. The mean precipitation amounts on a rainy day with 0—5 mm, 5—10 mm, and >10 mm precipitation events were 1.2—1.3 mm/d, 7.0—7.1 mm/d, and 17.8—19.2 mm/d. From the annual distribution of precipitation events of different levels, which were affected by the combination of the southeast monsoon and the terrain, it could be seen that the 0—5 mm precipitation events were mainly concentrated from June to September in the growing season. The 5—10 mm precipitation events occurred mostly in July, and the >10 mm precipitation events predominantly occurred in August. Both the amount of precipitation and the number of precipitation days showed an increasing trend in the study area. A major feature of pulse precipitation from 1960 to 2013 in the desert steppe region of the study area was that 0—5 mm precipitation events showed an increasing trend in terms of both the precipitation amount and the number of precipitation days. In the Bailingmiao and Mandulla regions, where annual precipitation was relatively low, both the number of precipitation days and the precipitation amount showed an increasing trend for all precipitation levels. This was another significant feature of precipitation events in the study area. However, in the Xilamuren region, where the annual amount of precipitation is relatively high, there has been a shift in the internal precipitation structure from large and medium precipitation events to small precipitation events, although the annual precipitation continues to show an increasing trend. The annual precipitation and growing—season precipitation had 2.84—4.5 a main periods. The differences among the precipitation gradients are inconspicuous, and from the perspective of the precipitation events of different levels, the overall trend indicates that the higher the precipitation level, the shorter the cycle of precipitation events.
引文
[1] 方精云.我国草原牧区呼唤新的草业发展模式.科学通报,2016,61(2):137-138.
    [2] 沈海花,朱言坤,赵霞,耿晓庆,高树琴,方精云.中国草地资源的现状分析.科学通报,2016,61(2):139-154.
    [3] Song Y F,Guo Z X,Lu Y J,Yan D H,Liao Z l,Liu H W,Cui Y J.Pixel-level spatiotemporal analyses of vegetation fractional coverage variation and its influential factors in a desert steppe:a case study in Inner Mongolia,China.Water,2017,9(7):478.
    [4] Liu T,Xu Z Z,Hou Y H,Zhou G S.Effects of warming and changing precipitation rates on soil respiration over two years in a desert steppe of northern China.Plant and Soil,2016,400(1/-2):15-27.
    [5] A?t-Mesbah S,Dufresne J L,Cheruy F,Hourdin F.The role of thermal inertia in the representation of mean and diurnal range of surface temperature in semiarid and arid regions.Geophysical Research Letters,2015,42(18):7572-7580.
    [6] Sala O E,Gherardi L A,Peters D P C.Enhanced precipitation variability effects on water losses and ecosystem functioning:differential response of arid and mesic regions.Climatic Change,2015,131(2):213-227.
    [7] Lewandrowski W,Erickson T E,Dixon K W,Stevens J C.Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events.Journal of Applied Ecology,2016,54(3):997-1007.
    [8] Fan Y,Li X Y,Wu X C,Li L,Li W,Huang Y M.Divergent responses of vegetation aboveground net primary productivity to rainfall pulses in the Inner Mongolian Plateau,China.Journal of Arid Environments,2016,129:1-8.
    [9] Noy-Meir I.Desert ecosystems:environment and producers.Annual Review of Ecology and Systematics,1973,4:25-51.
    [10] Sala O E,Lauenroth W K.Small rainfall events:An ecological role in semiarid regions.Oecologia,1982,53(3):301- 304.
    [11] 赵文智,刘鹄.干旱、半干旱环境降水脉动对生态系统的影响.应用生态学报,2011,22(1):243-249.
    [12] Gao R R,Yang X J,Liu G F,Huang Z Y,Walck J L.Effects of rainfall pattern on the growth and fecundity of a dominant dune annual in a semi-arid ecosystem.Plant and Soil,2015,389(1/-2):335-347.
    [13] Loik M E,Breshears D D,Lauenroth W K,Belnap J.A multi-scale perspective of water pulses in dryland ecosystems:climatology and ecohydrology of the western USA.Oecologia,2004,141(2):269-281.
    [14] Liu L X,Zhao X Y,Meng Q L,Zhao H,Lu X Q,Gao J K,Chang X L.Annual precipitation fluctuation and spatial differentiation characteristics of the Horqin Region.Sustainability,2017,9(1):111.
    [15] Sala O E,Lauenroth W K.Small rainfall events:an ecological role in semiarid regions.Oecologia,1982,53(3):301-304.
    [16] 陈军,王玉辉.1956-2009年内蒙古苏尼特左旗荒漠草原的降水格局.生态学报,2012,32(22):6925-6935.
    [17] 马宁,王乃昂,赵力强,张振瑜,董春雨,沈士平.巴丹吉林沙漠腹地降水事件后的沙山蒸发观测.科学通报,2014,59(7):615-622.
    [18] Andrés P,Moore J C,Cotrufo F,Denef K,Haddix M L,Molowny-Horas R,Riba M,Wall D H.Grazing and edaphic properties mediate soil biotic response to altered precipitation patterns in a semiarid prairie.Soil Biology and Biochemistry,2017,113:263-274.
    [19] 宋一凡,郭中小,卢亚静,廖梓龙,徐晓民.一种基于SWAT模型的干旱牧区生态脆弱性评价方法--以艾布盖河流域为例.生态学报,2017,37(11):3805-3815.
    [20] Huxman T E,Snyder K A,Tissue D,Leffler A J,Ogle K,Pockman W T,Sandquist D R,Potts D L,Schwinning S.Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia,2004,141(2):254-268.
    [21] Cheng X L,An S Q,Li B,Chen J Q,Lin G H,Liu Y H,Luo Y Q,Liu S R.Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China.Plant Ecology,2006,184(1):1-12.
    [22] Schwinning S,Sala O E.Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.Oecologia,2004,141(2):211-220.
    [23] 魏凤英.现代气候统计诊断与预测技术.北京:气象出版社,1999.
    [24] Odum E P.Ecology:A Bridge Between Science and Society.3rd ed.Sunderland:Sinauer Associates,1997.
    [25] 战云健,任国玉,任玉玉,李娇.1951-2009年东亚地区日降水趋势特征分析.气候与环境研究,2013,18(6):767-780.
    [26] Solomon S,Qin D,Manning M,Chen Z,Marquis M,Averyt K B,Tignor M,Miller H L.Climate Change 2007:the Physical Science Basis.Cambridge,United Kingdom,New York,NY,USA:Cambridge University Press,2007.
    [27] Hao Y B,Kang X M,Cui X Y,Ding K,Wang Y F,Zhou X Q.Verification of a threshold concept of ecologically effective precipitation pulse:from plant individuals to ecosystem.Ecological Informatics,2012,12:23-30.
    [28] Liu Z,Zhang Y Q,Fa K Y,Qin S G,She W W.Rainfall pulses modify soil carbon emission in a semiarid desert.CATENA,2017,155:147-155.
    [29] Heisler-White J L,Knapp A K,Kelly E F.Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland.Oecologia,2008,158(1):129-140.
    [30] 鱼京善,王国强,刘昌明.基于GIS系统和最大熵谱原理的降水周期分析方法.气象科学,2004,24(3):277-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700