干旱复水对春玉米幼苗生长和生理特性的影响及其根源ABA调控效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of drought and rewatering on growth and physiological characteristics of maize seedlings and regulation of root-sourced ABA
  • 作者:柳燕兰 ; 郭贤仕 ; 马明生 ; 姜小凤
  • 英文作者:LIU Yan-lan;GUO Xian-shi;MA Ming-sheng;JIANG Xiao-feng;Institute of Dryland Farming,Gansu Academy of Agricultural Sciences, Key Laboratory of Northwest Drought-resistant Crop Farming and Cultivation,Ministry of Agriculture,People's Republic of China, Key Laboratory of Efficient Water Utilization in Dryland Farming of Gansu Province;
  • 关键词:春玉米 ; 干旱 ; 复水 ; 根源ABA ; 生长 ; 光合特性 ; 生理特性
  • 英文关键词:spring maize;;drought;;rewatering;;root-sourced ABA;;growth;;photosynthetic characteristics;;physiological characteristics
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:甘肃省农业科学院旱地农业研究所/农业部西北作物抗旱栽培与耕作重点开放实验室/甘肃省旱作区水资源高效利用重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.172
  • 基金:国家自然科学基金(31460323);; 国家科技支撑计划(2015BAD22B01-05);; 甘肃省农业科学院农业科技创新专项(2017GAAS27)
  • 语种:中文;
  • 页:GHDQ201901027
  • 页数:8
  • CN:01
  • ISSN:61-1088/S
  • 分类号:193-199+205
摘要
为了探明根源ABA对春玉米干旱后复水补偿生长的调控效应,采用盆栽试验以春玉米酒单2号为材料,设CK(正常供水,保持最大持水量的75%~80%)、MS(中度干旱,保持最大持水量的50%~55%)、SS(重度干旱,保持最大持水量的35%~40%)、MS-CK(中度干旱再复水)、SS-CK(重度干旱再复水)等5个处理,研究苗期干旱及复水条件下春玉米生物量积累、光合特性、抗氧化酶活性、根源ABA含量的变化。结果表明:重度干旱胁迫具有较高的根源ABA含量,诱导叶片抗氧化酶SOD、POD、CAT活性显著提高,增幅分别为85.48%、72.67%、22.58%,并导致其叶片气孔导度(Gs)和光合速率(Pn)降低51.56%、12.16%,同时最大电子传递速率(Jmax)、最大羧化速率(VCmax)、磷酸丙糖利用率(TPU)及Ru BP羧化酶的羧化效率(CE)降低,使其单株生物量较正常供水降低46.56%;复水后,较高的根源ABA含量影响其细胞膜修复和光合功能恢复的速度,使单株生物量较未复水重度干旱胁迫增加90.36%,较正常供水增加1.73%,表现出补偿效应。中度干旱胁迫具有相对较低的根源ABA含量,诱导叶片抗氧化酶SOD、POD、CAT活性提高幅度较小,增幅分别为64.72%、41.72%、11.62%,并使Gs和Pn分别降低15.01%和6.42%,同时Jmax、VCmax、TPU及CE稍有降低,其单株生物量较正常供水仅降低13.64%;复水后,相对较低的根源ABA含量最终使单株生物量较未复水的中度干旱胁迫增加30.71%,较正常供水增加12.88%,表现出超补偿效应。综上,干旱胁迫产生的根源ABA主要对旱后复水春玉米光能吸收、光合碳同化及抗氧化保护功能起积极调节作用。
        To reveal the regulation effect of root-sourced ABA to compensatory growth of spring maize after rehydration. Spring maize Jiudan 2 grown in pots experiment in greenhouse was subjected to five different treatments( well-watered and maintaining 75% ~80% of maximum water holding capacity( CK) 、moderately stressed and maintaining 50% ~ 55% of maximum water holding capacity( MS) 、severely stressed and maintaining 35% ~ 40% of maximum water holding capacity( SS) 、rehydration after moderately stressed( MS-CK) 、rehydration afterseverely stressed( SS-CK)). The maize biomass,photosynthetic characteristics,root-sourced ABA concentrations and antioxidant enzyme activity were measured. The results showed that severe drought stress resulted in higher rootsourced ABA content of 80.15%,and significantly increased the activity of antioxidant enzymes SOD,POD,and CAT,by 85.48%,72.67%,and 22.58%,respectively,but resulted in significant decrease of leaf stomatal conductance( Gs) and photosynthetic rate( Pn) by 51.56% and 12.16%,while the maximum Jmax,VCmax,TPU,and carboxylation efficiency( CE) of RuBP carboxylase decreased,which resulted in 46.56% decrease in the biomass per plant compared with normal water supply. After rewatering,the higher ABA content affected the recovery rate of cell membrane repairing and photosynthesis. Therefore,the biomass per plant increased by 90.36% compared with severe drought stress and increased by 1.73% compared with normal water supply,showing a compensatory effect.Moderate drought stress had a relatively lower ABA content of 23.53%,which resulted in increase of antioxidant enzymes SOD,POD,and CAT activity in leaves,by 64.72%,41.72%,and 11.62%,respectively. That made the decrease in Gs and Pn relatively smaller by 15.01% and 6.42%,while Jmax,VCmax,TPU,and CE of Ru BP carboxylase decreased less,which reduced the biomass per plant and decreased by only 13.64% compared to normal water supply. After rewatering,the relatively low ABA content in roots eventually increased the biomass per plant by30.71% compared with moderate drought stress and increased by 12.88% compared with normal water supply showing a super-compensatory effect. In conclusion,the root-sourced ABA caused by drought stress plays a positive regulatory role in light absorption,photosynthetic carbon assimilation,and antioxidant protection on spring maize.
引文
[1]寇丹,苏德荣,吴迪,等.地下调亏滴灌对紫花苜蓿耗水、产量和品质的影响[J].农业工程学报,2014,30(2):116-123.
    [2]杜长玉,庞全国,李东明.玉米不同时期缺水胁迫对产量和生理指标的影响[J].玉米科学,2002,10(增刊):64-64,72.
    [3]山仑,邓西平,苏佩,等.挖掘作物抗旱节水潜力-作物对多变低水环境的适应与调节[J].中国农业科技导报,2000,2(2):66-69.
    [4]安玉艳,梁宗锁.植物应对干旱胁迫的阶段性策略[J].应用生态学报,2012,23(10):2907-2915.
    [5]郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响[J].生态学报,2006,26(4):1138-1143.
    [6]许大全.光合作用效率[M].上海:上海科学技术出版社,2002:821-834.
    [7] Aroca R,Irigoyen J J,Sanchez-Diaz M. Drought enhances maizechilling tolerance II:Photosynthetic traits and protective mecha-nisms against oxidative stress[J]. Physiologia Plantarum,2003,117(4):540-549.
    [8] Baker N R,Rosenqvist E. Application of chlorophyll fluorescencecan improve crop production strategies:an examination of futurepossibilities[J]. Journal of Experimental Botany, 2004, 55(403):1607-1621.
    [9]白鹏,冉春艳,谢小玉.干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响[J].中国农业科学,2014,47(18):3566-3576.
    [10]张仁和,薛吉全,浦军,等.干旱胁迫对玉米苗期植株生长和光合特性的影响[J].作物学报,2011,37(3):521-528.
    [11] Efeoglu B,Ekmekci Y,Cicek N. Physiological responses ofthree maize cultivars to drought stress and recovery[J]. South Af-rican Journal Botany,2009,75(1):34-42.
    [12] Massacci A, Nabiv S M, Pietrosanti L. Response ofphotosynthesis apparatus of cotton to the onset of drought stressunder field conditions by gas change analysis and chlorophyll flu-orescence imaging[J]. Plant Physiology and Biochemistry,2008,46(2):189-195.
    [13] Jiang M Y,Zhang J H. Abscisic acid and antioxidant defense inplant cells[J]. Acta Botanica Sinica,2004,46(1):1-9.
    [14] Stroumin P,Radeva R. Alteration in abscisic acid content and al-dehyde oxidase activity in winter wheat plants under nfluence oflow and freezing temperature[J]. Comptes Rendus DelacademieBulgaredes Sciences,2007,60:1205-1208.
    [15]姚满生,杨小环,郭平毅.脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响[J].棉花学报,2005,17(3):141-145.
    [16] Chaves M M,Oliverir A M. Mechanisms underlying plant resili-ence to water deficits:prospects for water-saving agriculture[J].Journal of Experiment Botany,2004,55(407):2366-2380.
    [17]陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报,2001,27(4):512-516.
    [18]山仑,苏佩,郭礼坤,等.不同类型作物对干湿交替环境的反应[J].西北植物学报,2000,20(2):164-170.
    [19]康绍忠,张建华,梁宗锁,等.控制性交替灌水———一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-6.
    [20] Mc Murtrie R E,Wang Y P. Mathematical models of the photo-synthetic response of tree stands to rising CO2concentrations andtemperatures[J]. Plant,Cell and Environment,1993,6(1):1-13.
    [21] Sharkey T D,Bernacchi C J,Farguhar G D. Fitting photosyntheticcarbon dipxide response curves for C3 leaves[J]. Plant Cell Envi-ron,2007,30(9):1035-1040.
    [22]李岩,潘海春,李德全.土壤干旱条件下玉米叶片内源激素含量及光合作用的变化[J].植物生理学报,2005,26(4):301-305.
    [23]郑炳松.现代植物生理生化研究技术[M].北京:气象出版社,2006:91-92.
    [24]孙群,胡景江.植物生理学研究技术[M].杨凌:西北农林科技大学出版社,2006:167-170.
    [25]张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量影响[J].应用生态学报,2003,14(9):1503-1506.
    [26]罗宏海,韩焕勇,张亚黎,等.干旱及复水对膜下滴灌棉花根系及叶片内源激素含量的影响[J].应用生态学报,2013,24(4):1009-1016.
    [27]杜伟莉,高杰,胡富亮,等.玉米叶片光合作用和渗透调节对干旱胁迫的响应[J].作物学报,2013,39(3):530-536.
    [28] Mishra KB,Iannacone R,Petrozza A,et al. Engineered droughttolerance in tomato plants is reflected in chlorophyll fluorescenceemission[J]. Plant Science,2012,182:79-86.
    [29]林叶春,曾昭海,任长忠,等.局部根区灌溉对裸燕麦光合特征曲线及叶绿素荧光特性的影响[J].作物学报,2012,38(6):1062-1072.
    [30]王强,金则新,郭水良,等.濒危植物长叶榧的光合生理生态特性[J].生态学报,2014,34(22):6460-6470.
    [31]李长宁,Manoj K S,农倩,等.水分胁迫下外源ABA提高甘蔗抗旱性的作用机理.作物学报[J],2010,36(5):863-870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700